Сообщение на тему ученые и их вклад. Известные отечественные ученые-биологи и их открытия

До XIX века понятия «биология» не существовало, а тех, кто занимался изучением природы, называли естествознателями, натуралистами. Сейчас этих ученых именуют родоначальниками биологических наук. Вспомним, кто были отечественные ученые-биологи (и их открытия кратко опишем), повлиявшие на развитие биологии как науки и положившие начало новым её направлениям.

Вавилов Н.И. (1887-1943)

Наши ученые-биологи и их открытия известны всему миру. Среди самых знаменитых - Николай Иванович Вавилов, советский ботаник, географ, селекционер, генетик. Родился в купеческой семье, получил образование в сельскохозяйственном институте. В течение двадцати лет руководил научными экспедициями, изучающими растительный мир. Он объездил практически весь земной шар, за исключением Австралии и Антарктиды. Собрал уникальную коллекцию семян различных растений.

В ходе своих экспедиций ученый выявил очаги зарождения культурных растений. Он предположил, что существуют некие центры их происхождения. Внес огромный вклад в изучение иммунитета растений и выявил что позволило установить закономерности в эволюции растительного мира. В 1940 году ботаник был арестован по сфабрикованному обвинению в растрате. Умер в тюрьме, посмертно реабилитирован.

Ковалевский А.О. (1840-1901)

В ряду первооткрывателей достойное место занимают отечественные ученые-биологи. И их открытия повлияли на развитие мировой науки. Среди всемирно известных исследователей беспозвоночных - Александр Онуфриевич Ковалевский, эмбриолог и биолог. Получил образование в Санкт-Петербургском университете. Изучал морских животных, предпринимал экспедиции на Красное, Каспийское, Средиземноморское и Адриатическое моря. Создал Севастопольскую морскую биостанцию и долгое время был её директором. Внес огромный вклад в аквариумистику.

Александр Онуфриевич изучал эмбриологию и физиологию беспозвоночных. Он был сторонником дарвинизма и изучал механизмы эволюции. Проводил исследования в области физиологии, анатомии и гистологии беспозвоночных. Стал одним из создателей эволюционной эмбриологии и гистологии.

Мечников И.И. (1845-1916)

Наши ученые биологи и их открытия были по достоинству оценены в мире. Илья Ильич Мечников 1908 году стал лауреатом Нобелевской премии в области физиологии и медицины. Мечников родился в семье офицера, образование получил в Харьковском университете. Открыл внутриклеточное пищеварение, клеточный иммунитет, доказал с помощью методов эмбриологии общее происхождение позвоночных и беспозвоночных.

Работал над вопросами эволюционной и сравнительной эмбриологии и вместе с Ковалевским стал родоначальником этого научного направления. Труды Мечникова имели большое значение в борьбе с инфекционными заболеваниями, тифом, туберкулезом, холерой. Ученого занимали процессы старения. Он полагал, что преждевременную смерть вызывает отравление микробными ядами и пропагандировал гигиенические способы борьбы, большую роль отводил восстановлению микрофлоры кишечника с помощью кисломолочных продуктов. Ученый создал русскую школу иммунологии, микробиологии, патологии.

Павлов И.П. (1849-1936)

Какой вклад в изучение высшей нервной деятельности внесли отечественные ученые биологи и их открытия? Первым русским нобелевским лауреатом в области медицины стал Павлов Иван Петрович за работу о физиологии пищеварения. Великий русский биолог и физиолог стал создателем науки о высшей нервной деятельности. Он ввел понятие о безусловных и условных рефлексах.

Ученый происходил из семьи священнослужителей и сам окончил рязанскую духовную семинарию. Но на последнем курсе прочел книгу И. М. Сеченова о рефлексах головного мозга и увлекся биологией и медициной. Он изучал физиологию животных в Петербургском университете. Павлов с помощью хирургических методов 10 лет подробно изучал физиологию пищеварения и за эти исследования получил Нобелевскую премию. Следующей областью интересов стала высшая нервная деятельность, изучению которой он посвятил 35 лет. Он ввел основные понятия науки о поведении - условный и безусловный рефлексы, подкрепление.

Кольцов Н.К. (1872-1940)

Продолжаем тему «Отечественные ученые-биологи и их открытия». Николай Константинович Кольцов - биолог, основатель школы экспериментальной биологии. Родился в семье бухгалтера. Окончил Московский университет, где изучал сравнительную анатомию и эмбриологию, собирал научный материал в европейских лабораториях. Организовал лабораторию экспериментальной биологии при Народном университете имени Шанявского.

Изучал биофизику клетки, факторы, определяющие её форму. Эти работы вошли в науку под названием «принцип Кольцова». Кольцов - один из в России, организатор первых лабораторий и кафедры экспериментальной биологии. Ученый основал три биостанции. Стал первым русским ученым, который использовал физико-химический метод в биологических исследованиях.

Тимирязев К.А. (1843-1920)

Отечественные ученые биологи и их открытия в области физиологии растений внесли вклад в развитие научных основ агрономии. Тимирязев Климент Аркадьевич был естествоиспытателем, исследователем фотосинтеза и пропагандистом идей Дарвина. Ученый происходил из дворянского рода, окончил Петербургский университет.

Тимирязев изучал вопросы питания растений, фотосинтез, засухоустойчивость. Ученый занимался не только чистой наукой, но и придавал большое значение практическому применению исследований. Он заведовал опытным полем, где испытывал различные удобрения и фиксировал их воздействие на урожай. Благодаря этим исследованием сельское хозяйство значительно продвинулось по пути интенсификации.

Мичурин И.В. (1855-1935)

Ученые-биологи России и их открытия значительно повлияли на сельское хозяйство и садоводство. Иван Владимирович Мичурин - и селекционер. Его предки были мелкопоместными дворянами, от них ученый перенял интерес к садоводству. Ещё в раннем детстве он ухаживал за садом, многие деревья в котором были привиты его отцом, дедом и прадедом. Селекционную работу Мичурин начал в арендованном запущенном поместье. За период своей деятельности вывел более 300 сортов культурных растений, в том числе и адаптированных к условиям центральной полосы России.

Тихомиров А.А. (1850-1931)

Русские ученые биологи и их открытия помогали развивать новые направления в сельском хозяйстве. Александр Андреевич Тихомиров - биолог, доктор зоологии и ректор Московского университета. В Санкт-Петербургском университете получил юридическое образование, но заинтересовался биологией и получил второе высшее в Московском университете на отделении естественных наук. Ученый открыл такое явление, как искусственный партеногенез, один из важнейших разделов в индивидуальном развитии. Внес большой вклад в развитие шелководства.

Сеченов И.М. (1829-1905)

Тема «Известные ученые биологи и их открытия» будет неполной без упоминания Ивана Михайловича Сеченова. Это знаменитый русский биолог-эволюционист, физиолог и просветитель. Родился в семье помещика, образование получил в Главном инженерном училище и Московском университете.

Ученый исследовал головной мозг и обнаружил центр, вызывающий торможение центральной нервной системы, доказал влияние мозга на мышечную деятельность. Написал классический труд «Рефлексы головного мозга», где сформулировал мысль, что акты сознательные и бессознательные совершаются в виде рефлексов. Представил мозг как компьютер, который управляет всеми процессами жизнедеятельности. Обосновал дыхательную функцию крови. Ученый создал отечественную школу физиологии.

Ивановский Д.И. (1864-1920)

Конец XIX - начало XX века - время, когда творили великие русские ученые-биологи. И их открытия (таблица любого объема не смогла бы вместить их перечень) способствовали развитию медицины и биологии. В их числе и Дмитрий Иосифович Ивановский - физиолог, микробиолог и родоначальник вирусологии. Получил образование в Петербургском университете. Ещё во время учебы проявил интерес к заболеваниям растений.

Ученый предположил, что заболевания вызываются мельчайшими бактериями или токсинами. Сами вирусы увидели с помощью электронного микроскопа только через 50 лет. Именно Ивановского считают родоначальником вирусологии как науки. Ученый изучал процесс спиртового брожения и влияние на него хлорофилла и кислорода, почвенную микробиологию.

Четвериков С.С. (1880-1959)

Русские ученые-биологи и их открытия внесли большой вклад в развитие генетики. Четвериков Сергей Сергеевич родился ученый в семье фабриканта, образование получил в Московском университете. Это выдающийся генетик-эволюционист, организовавший изучение наследственности в популяциях животных. Благодаря этим исследованиям ученый считается основоположником эволюционной генетики. Он положил начало новой дисциплине - генетике популяций.

Вы ознакомились со статьей «Известные отечественные ученые биологи и их открытия». Таблица их достижений может быть составлена на основе предложенного материала.


Для Леонардо искусство всегда было наукой. Заниматься искусством значило для него производить научные выкладки, наблюдения и опыты. Связь живописи с оптикой и физикой, с анатомией и математикой заставляла Леонардо становиться ученым. И часто ученый оттеснял художника.

Как ученый и инженер Л. да Винчи обогатил проницательными наблюдениями почти все области науки того времени, рассматривая свои заметки и рисунки как подготовительные наброски к гигантской энциклопедии человеческих знаний. Скептически относясь к популярному в его эпоху идеалу ученого-эрудита, Л. да Винчи был наиболее ярким представителем нового, основанного на эксперименте естествознания.

Математика

Особенно высоко ценил Леонардо математику. Он считал, что «никакой достоверности нет в науках там, где нельзя приложить ни одной из математических дисциплин, и в том, что не имеет связи с математикой». Математические науки обладают, по его словам, «высшей достоверностью, накладывают молчание на язык спорщиков». Математика была для Леонардо опытной дисциплиной. Не случайно Леонардо да Винчи был изобретателем многочисленных приборов, предназначенных для решений математических задач (пропорциональный циркуль, прибор для вычерчивания параболы, прибор для построения параболического зеркала и др.) Он первый в Италии, а может быть и в Европе, ввел в употребление знаки + (плюс) и – (минус).

Леонардо оказывал предпочтение геометрии перед другими разделами математики. Он признавал важную роль числа и очень интересовался числовыми соотношениями в музыке. Но число для него значило меньше, чем геометрия, поскольку арифметика опирается на «конечные величины», тогда как геометрия имеет дело с «бесконечными величинами». Число слагается из отдельных единиц и представляет собой нечто монотонное, лишенное магии геометрических пропорций, которые имеют дело с поверхностями, фигурами, пространством. Леонардо пытался достичь квадратуры круга, - то есть создать квадрат, равновеликий кругу. Он упорно работал над этой проблемой, как и над другими головоломными задачами, в том числе с криволинейными и прямолинейными поверхностями, применяя целый ряд различных способов. Леонардо изобрел особый инструмент для черчения овалов и впервые определил центр тяжести пирамиды. Высшим выражением величия геометрии были пять правильных тел, почитавшихся в классической философии и математике. Это единственные твердые тела, которые состоят из равных многоугольников и симметричны по отношению ко всем своим вершинам. Это тетраэдр, гексаэдр, октаэдр, додекаэдр, икосаэдр. Они могут быть усеченными – то есть со срезанными симметрично вершинами, превращенными таким образом в полуправильные тела. Пик увлечения Леонардо математикой пришелся на время его сотрудничества с математиком Лукой Пачоли, появившемуся в 1496 году при дворе Сфорца. Леонардо создал для трактата Пачоли «О Божественной пропорции» серию иллюстраций.

Изучение геометрии позволило ему впервые создать научную теорию перспективы, и он был одним из первых художников, писавших пейзажи, сколько-нибудь соответствующие действительности. Правда, у Леонардо пейзаж еще несамостоятелен, это декорация к исторической или к портретной живописи, но какой огромный шаг по сравнению с предшествующей эпохой и сколько тут ему помогла верная теория!

Механика

Особое внимание Леонардо да Винчи уделял механике, называя ее "раем математических наук" и видя в ней главный ключ к тайнам мироздания. Теоретические выводы Леонардо в области механики поражают своей ясностью и обеспечивают ему почетное место в истории этой науки, в которой он является звеном, соединяющем Архимеда с Галилеем и Паскалем.

Работы Леонардо в области механики могут быть сгруппированы по следующим разделам: законы падения тел; законы движения тела, брошенного под углом к горизонту; законы движения тела по наклонной плоскости; влияние трения на движение тел; теория простейших машин (рычаг, наклонная плоскость, блок); вопросы сложения сил; определение центра тяжести тел; вопросы, связанные с сопротивлением материалов. Перечень этих вопросов делается особо значительным, если учесть, что многие из них разбирались вообще впервые. Остальные же, если и рассматривались до него, то базировались в основном на умозаключениях Аристотеля, весьма далеких в большинстве случаев от истинного положения вещей. По Аристотелю, например, тело, брошенное под углом к горизонту, сначала должно лететь по прямой, а в конце подъема, описав дугу круга, падать вертикально вниз. Леонардо да Винчи рассеял это заблуждение и нашел, что траекторией движения в этом случае будет парабола.

Он высказывает много ценных мыслей, касающихся сохранения движения, подходя вплотную к закону инерции. «Ни одно чувственно воспринимаемое тело, - говорит Леонардо, - не может двигаться само собою. Его приводит в движение некоторая внешняя причина, сила. Сила есть невидимая и бестелесная причина в том смысле, что не может изменяться ни по форме, ни по напряжению. Если тело движимо силой в данное время и проходит данное пространство, то та же сила может подвинуть его во вдвое меньшее пространство. Всякое тело оказывает сопротивление в направлении своего движения. (Здесь почти угадан Ньютонов закон действия, равного противодействию). Свободно падающее тело в каждый момент своего движения получает известное приращение скорости. Удар тел есть сила, действующая в течение весьма недолго времени». На основании этих выводов Леонардо убедился в том, что аристотелевское предположение, что тело, движимое в два раза большей силой, проделает вдвое больший путь или что тело, весящее вполовину меньше, движимое той же силой, также проделает в два раза большее расстояние, на практике неосуществимо. Леонардо решительно отрицает возможность вечно движущегося без посторонней силы механизма. Он основывается на теоретических и опытных данных. По его теории, всякое отраженное движение слабее того, которое его произвело. Опыт показал ему, что шар, брошенный о землю, никогда (вследствие сопротивления воздуха и несовершенной упругости) не поднимается на ту высоту, с которой он брошен. Этот простой опыт убедил Леонардо в невозможности создать силу из ничего и расходовать работу без всякой потери на трение. О невозможности вечного движения он пишет: «Первоначальный импульс должен рано или поздно израсходоваться, а потому в конце концов движение механизма прекратится».

Леонардо знал и использовал в своих работах метод разложения сил. Для движения тел по наклонной плоскости он ввел понятие о силе трения, связав ее с силой давления тела на плоскость и правильно указав направление этих сил.

Леонардо работал и над конкретными инженерными проектами для своих покровителей – и как консультант, и как создатель простых утилитарных предметов вроде клещей, замков или домкратов, изготовлявшихся в его мастерской. Подъемные механизмы имели большое значение при подъеме с земли тяжелых грузов, например, каменных блоков, - особенно при погрузке на транспортные средства. Леонардо впервые сформулировал мысль о том, что в этих простейших машинах выигрыш в силе происходит за счет потери во времени.

Гидравлика

Большое место в трудах Леонардо да Винчи занимала гидравлика. Он начал заниматься гидравликой еще в ученические годы и возвращался к ней в течение всей своей жизни. Как и в других областях своей деятельности, Леонардо сочетал в гидравлике разработку теоретических принципов с решением конкретных прикладных задач. Теория сообщающихся сосудов и гидравлических насосов, соотношение между скоростью течения воды и площадью сечения - все эти вопросы в основном родились из прикладных инженерных задач, которыми он так много занимался (постройка шлюзов, каналов, мелиорация). Леонардо спроектировал и частично осуществил постройку ряда каналов (канал Пиза - Флоренция, оросительные каналы на реках По и Арно). Он почти вплотную приблизился к формулировке закона Паскаля, а в теории сообщающихся сосудов практически предвосхитил идеи XVII в.

Леонардо занимала также теория водоворота. Имея довольно ясное понятие о центробежной силе, он заметил, что «вода, движущаяся в водовороте, движется так, что те из частиц, которые ближе к центру, имеют большую вращательную скорость. Это – поразительное явление, потому что, например, частицы колеса, вращающегося вокруг оси, имеют тем меньшую скорость, чем они ближе к центру: в водовороте мы видим как раз обратное». Леонардо пытался классифицировать и описать сложные конфигурации воды в турбулентном движении.

Леонардо, которого называли «хозяином воды», консультировал правителей Венеции и Флоренции; соединяя теорию и практику, он стремился показать, почему смерчи поглощают берега, доказать, что для достижения желаемых результатов следует использовать неиссякаемую силу движущейся воды, а противостоять ей.

Еще более отчетливы и замечательны воззрения Леонардо на волнообразное движение. «Волна – говорит он, - есть следствие удара, отраженного водою». «Часто волны движутся быстрее ветра. Это происходит оттого, что импульс был получен, когда ветер был сильнее, чем в данное время. Скорость волны не может измениться мгновенно». Чтобы пояснить движение частиц воды, Леонардо начинает с классического опыта новейших физиков, т.е. бросает камень, производя круги на поверхности воды. Он дает чертеж таких концентрических кругов, затем бросает два камня, получает две системы кругов и задается вопросом: «Отразятся ли волны под равными кругами?» затем он говорит: «Таким же образом можно объяснить движение звуковых волн. Волны воздуха удаляются кругообразно от места своего происхождения, один круг встречает другой и проходит далее, но центр постоянно остается на прежнем месте»

Этих выписок достаточно, чтобы убедиться в гениальности человека, в конце XV века положившего основание волнообразной теории движения, которая получила полное признание лишь в XIX столетии.

Физика

В области практической физики Леонардо также выказал замечательную изобретательность. Так, задолго до Соссюра, он соорудил весьма остроумный гигрометр. На вертикальном циферблате находится род стрелки или весов с двумя шариками равного веса, из которых один из воска, другой из ваты. В сырую погоду вата притягивает воду, становится тяжелее и перетягивает воск, вследствие чего рычаг подвигается, и по количеству пройденных им делений можно судить о степени влажности воздуха. Кроме того, Леонардо изобретал разные насосы, стекла для усиления света ламп, водолазные шлемы.

Еще Вентури утверждал, что Леонардо раньше Кардано и Порты изобрел камеру – обскуру. Теперь это вполне доказано благодаря исследованиям Гроте, который нашел у да Винчи соответствующие рисунки и описания.

В области прикладной физики весьма интересна изобретенная Леонардо паровая пушка. Действие ее состояло в том, что в сильно нагретую камеру вводилась теплая вода, мгновенно превращавшаяся в пары, которые своим давлением вытесняли ядро. Кроме того, он изобрел вертел, вращавшийся посредством токов теплого воздуха.

Военное дело

Нельзя обойти молчанием различные военные изобретения Леонардо. Замечательным примером того, как он относился к военным механизмам, является его проект гигантского самострела. Испытывая отвращение к войне, которую он называл «отвратительным безумием», Леонардо в то же время был увлечен созданием самого разрушительного на тот момент оружия, которым он занялся не только по желанию своих покровителей, но и, будучи сам захвачен возможностью создания систем, способных тысячекратно увеличить могущество человека. Кроме того, он задумывался над созданием разрывных снарядов, с тем, чтобы метательное орудие обладало еще большей пробивающей силой.

Остроумны изобретенные Леонардо землекопательные машины, состоящие из сложной системы рычагов, движущих одновременно десятки лопат. В виде курьеза можно указать также на изобретенные им колесницы с вращающимися серпами, которые, врезываясь в неприятельскую пехоту, должны были косить солдат.

Гораздо более важны чертежи и объяснения да Винчи, относящиеся к сверлению пушечных жерл и к отливке различных частей орудия. Особенно он интересовался различными бронзовыми сплавами. Весьма подробно исследовал Леонардо обстоятельства полета снарядов, интересуясь этим предметом не только как артиллерист, но и как физик. Он разбирал такие вопросы, как, например, какую форму и величину должны иметь зерна пороха для более скорого сгорания или для более сильного действия? Какой формы должна быть картечь для более быстрого полета? На многие из таковых вопросов исследователь отвечает вполне удовлетворительно.

Большой мечтой Леонардо – инженера был полет – созданию Uccello («большой птицы») он придавал большое значение. Тот, кто мог покорить небо, действительно имел право заявить, что создал «вторую природу».

Как и во всех других исследованиях Леонардо, основы были заложены в природе. Птицы и летучие мыши подсказали ему, как этого достичь. Но Леонардо не собирался следовать примеру легендарного героя Дедала, привязав покрытые перьями птичьи крылья к рукам, чтобы взлететь, махая ими. Он с самого начала видел, что проблема заключалась в соотношении силы и веса. Леонардо достаточно хорошо знал анатомию, чтобы понимать, что рука человека не создана для размахивания с силой, эквивалентной силе птичьего крыла. Нужно отметить, что он начал изучать полет птиц, поскольку ему было необходимо понять принципы, на которые он мог опираться, чтобы достичь положительных результатов, используя лишь силу человека. До 1490 года он придумал каркасную конструкцию крыльев, образцом для которой было строение крыльев летающих существ, но он учитывал и строение человеческих мышц, особенно мышц ног. Возможно, педали могли дополнить мышцы рук и груди в достаточной мере, чтобы достичь желаемого результата. В крыльях использованы «кости» из дерева, «сухожилия» из веревок и «связки» из кожи, чтобы воспроизвести сложные движения птичьего крыла. Задумано было прекрасно, но он пришел к выводу, что ни одна из дорогих его сердцу конструкций не способна действовать так, как это требовалось.

Когда после возвращения во Флоренцию Леонардо вторично обратился к этой проблеме, он пошел по другому пути. Небольшой Туринский кодекс, посвященный полету птиц и датированный 1505 годом, свидетельствует о том, что он вновь вернулся к изучению полета птиц, паривших в восходящих потоках теплого воздуха над тосканскими холмами, - особенно огромных хищных птиц, планировавших, не махая крыльями, высматривая добычу внизу. Он делал наброски воздушных вихрей под вогнутой частью птичьего крыла, выяснял, к чему приводят изменения центра тяжести у птицы и что могут сделать незаметные движения хвоста. Он придерживался стратегии активного планирования, при котором любые движения крыльев и хвоста были направлены не на контролируемый отрыв от земли, а на управление высотой, траекторией полета и виражи. Конструкция крыла по-прежнему основывалась на природных наблюдениях, но это были общие принципы и тенденции, а не простое подражание. Авиатор, которому, вероятно, предстояло управлять полетом и поддерживать равновесие с помощью хвоста, должен был висеть под крыльями, регулируя центр тяжести для возможно более точного управления полетом.

Хотя Леонардо ничего не было известно об аэродинамической поверхности, и он лишь интуитивно предполагал существование давления, производимого сжатым или разреженным воздухом, изучение природы помогло ему найти достаточно верный путь.

Анатомия

О Леонардо говорил как о художнике, производящем вскрытия и исследующем, как гласит легенда, запретные тайны разлагающихся тел, при том, что сам он признавал отталкивающие стороны занятий «анатомией». Вероятно, это была запрещенная и святотатственная деятельность, которая поставила его вне законов церкви. Полностью доказанной диссекцией целого человеческого трупа, - возможно, единственной, произведенной им, - было вскрытие «столетнего» старика, свидетелем «тихой смерти» которого в больнице Санта Мария Нуова Леонардо был зимой 1507-08 года. Чаще он работал с животными, которые, как считалось, не слишком отличаются от людей, разве что конфигурацией тела и размерами.

При том, что Леонардо занимался вскрытиями и не уставал повторять о преимуществе «опыта» перед книжным знанием, может показаться удивительным, что его анатомические исследования базировались на традиционных знаниях. Например, он долгое время придерживался учения о двухкамерном сердце. Кроме того, для Леонардо анатомия была не «описательной» в современном понимании, а «функциональной»; иными словами, он всегда рассматривал форму с точки зрения функции. Леонардо не привнес никаких радикальных изменений в существовавшую до него физиологию, но создал цельную картину динамики живого тела в трех измерениях, рисунок у него служит одновременно и способом изображения, и формой исследования.

Похвала глазу

Не смотря на то, что взгляды Леонардо на внутреннее строение глаза менялись, Леонардо работал, исходя из принципа, что это инструмент, построенный с геометрической точностью в соответствии с законами оптики. Его первоначальное представление о строении глаза заключалось в том, что имеющее сферическую форму прозрачное и стекловидное тело глаза (представляющее собой линзу) окружено влагой и оболочками глаза. Зрачок регулирует угол зрения, таким образом, получается "визуальная пирамида" - то есть пучок лучей от предмета или поверхности - с вершиной в глазу. Глаз извлекает пирамиду из хаотической массы лучей, которые распространяются от предмета во все стороны. Чем дальше один и тот же предмет находится от глаза, тем уже угол, и тем меньшим он кажется. Если представить, что свет исходит от предмета в виде ряда концентрических волн, пирамида постепенно будет сужаться с каждой последующей удаляющейся от предмета волной. Размеры, как учит теория перспективы, которой пользовались художники, пропорциональны расстоянию от предмета до глаза. Он объяснял, что сила излучений от объекта, которые он называл в соответствии с традициями средневековой оптики "образами", - уменьшается пропорционально расстоянию от объекта. Эта оптическая теория объясняет не только постепенное уменьшение вещей в соответствии с правилами линейной перспективы, но также и уменьшение отчетливости и яркости цвета на больших расстояниях. Этой потерей четкости и интенсивности цвета, наряду со специфическими свойствами влажного воздуха, который обволакивает предметы, подобно вуали, объясняются магические эффекты "воздушной перспективы" его пейзажей - как в рисунке, так и в живописи.

Этого взгляда на глаз, которого Леонардо придерживался в 1490-е годы, он перешел около 1508 года к более сложной интерпретации формы и функции глаза. Важно также, что он убедился, что пирамида не может заканчиваться в одной точке глаза, поскольку точка не измерима - это означало бы неразделимость «образов» в оптическом поле. Леонардо считал, что глаз и его зрачок действуют подобно камере обскура. Он знал, что изображение, полученное при помощи камеры, перевернутое, и теоретически разработал ряд способов, как перевернуть изображение, вернуть его в нормальное положение.

По мере знакомства с посвященными оптике трудами крупнейших средневековых ученых Леонардо стал все больше понимать феномен «обмана зрения». Этот раздел оптики изучал такие явления, как наша неспособность видеть очень быстро движущиеся предметы и отчетливо различать что – либо чересчур яркое или, напротив, темное, «инерцию зрения», наблюдаемую, когда мы смотрим на то, что быстро движется.

Какими бы переменчивыми и сложными ни были его поздние теории восприятия, неизменным оставалось то, что глаз работал согласно законам геометрии.

Теория перспективы

Леонардо систематически изучал эффекты освещения одного и многих предметов из одного и нескольких источников разных размеров, очертаний и удаленности. Именно на этой основе он реформировал свет и цвет в живописи, развивая «тональную» систему, в которой свет и тень имели преимущество перед цветом в передаче рельефности. Он наблюдал за тем, как уменьшалась интенсивность теней по мере удаления от непрозрачного предмета, отбрасывающего их, в соответствии с законами пропорционального уменьшения, который применим повсеместно к свету и другим динамическим системам. Он вычислял относительную интенсивность света на поверхностях в зависимости от угла падения и вычерчивал схемы вторичного отражения света от освещенных поверхностей на затененных местах. Последний феномен он использовал, чтобы объяснить серый цвет теневой стороны луны, который, как он доказал, является результатом отражения света от поверхности земли. Его штудии света, падающего на лицо из одной точки и подчеркивающего контуры, показывают нам, что он пытался моделировать формы согласно некой системе, напоминающей ту, которой следует луч в компьютерной графике. Чем более прямой угол «перкуссии», тем больше интенсивность освещения, хотя на самом деле здесь действует, как мы теперь знаем, установленный в 18 веке Ламбертом закон косинуса, а не простое правило пропорций Леонардо. Для да Винчи результат всегда пропорционален углу падения луча. Таким образом, скользящий свет не будет освещать поверхность так же сильно, как тот, который падает на ней перпендикулярно.

По Леонардо, в пропорциях нашло выражение совершенство замысла Бога в отношении всех форм и сил природы. Красота пропорций была важнейшей задачей для флорентийских архитекторов, скульпторов и художников. Леонардо был первым, кто вписал представление художника о красоте пропорций в общую картину пропорционального устройства природы. Самым авторитетным трудом об архитектурных пропорциях был трактат об архитектуре древнеримского автора Витрувия. В качестве идеала красоты в архитектуре Витрувий выбрал человеческое тело, с раскинутыми в стороны ногами и руками, вписанное в круг и квадрат – два наиболее совершенные геометрические фигуры. Внутри этой схемы части тела можно определить в соответствии с системой относительных размеров, в которой каждая часть, например лицо, находится в простом пропорциональном отношении к другой части. Воспроизведенная Леонардо витрувианская схема тела человека получила свое законченное визуальное воплощение и широкое распространение как символ «космического» замысла строения человека. Как говорил Леонардо, пропорциональное строение человеческого тела – это аналог музыкальных гармоний, которые были основаны на космических соотношениях, выстроенных греческим математиком Пифагором. Именно математическая основа музыки позволяла ей с большим основанием, чем другим искусствам, соперничать с живописью, хотя он всячески старался подчеркнуть, что музыкальные созвучия необходимо слушать последовательно, тогда как картину можно охватить одним взглядом.



, не могла бы возникнуть, если бы там, и вообще в Англии в то время, не существовало культурной научной общественности, правильно оценивающей и поддерживающей деятельность учёных. Исторический опыт показывает, что число людей, обладающих достаточными творческими способностями, чтобы оказывать заметное влияние на развитие как науки, так и искусства, очень мало. Это видно, например, из отношения числа научных работ, которые печатаются, к числу научных работ, которые действительно оказали влияние на развитие науки. То же относится к числу написанных художниками картин, тех, которые можно назвать произведениями искусства. Маркс объяснил исключительно высокую стоимость шедевров больших мастеров тем, что в их цену входят расходы на всё то большое количество написанных картин, которые не имеют художественной ценности. Такой же жесткий отбор достойных произведений происходит и в литературе, и в музыке.

Очевидно, чтобы в стране успешно развивались наука и искусство, должен существовать большой набор научных работ и произведений искусства, чтобы из них происходил отбор той небольшой части, которая только и двигает науку и развивает художественную культуру. Для этого отбора и должно существовать здоровое общественное мнение, которое могло бы справедливо и квалифицированно оценивать лучшие работы.

Поэтому здоровая организация науки в стране обеспечивается не только хорошими условиями для научной работы, но и созданием условий для правильной оценки результатов этой работы. Теперь во всех странах это лучше всего обеспечивается специальными общественными органами, как академии наук, научные общества, научные советы и пр. Благодаря интернациональному значению науки стала возможной более объективная оценка путём создания международного общественного мнения. Это достигается широким общением учёных на симпозиумах, конгрессах, переводом научных статей на иностранные языки и др.

Сейчас с увеличением роли науки в развитии техники, хозяйства и культуры страны научные работы стали поглощать заметную долю государственных расходов, и эффективная организация научных работ становится крупной государственной проблемой.

Организации науки нельзя давать развиваться стихийно, нужно изучать закономерности развития коллективной научной работы, мы должны уметь отбирать творчески талантливых людей. И это должно делаться на основании изучёния опыта деятельности больших учёных и больших организаторов научной работы, каким и был Резерфорд .

Самое важное и трудное в организации науки - это отбор действительно наиболее творчески одарённой молодежи и создание тех условий, при которых ее талант мог бы быстро развернуться в полную меру. Для этого нужно уметь оценивать творческие способности у молодежи, когда она только начинает свою научную работу. Основная ошибка, которая тут нередко делается, - это то, что у молодёжи её познавательные способности и эрудиция часто принимаются за творческие качества.

В биографии Резерфорда есть один поучительный эпизод. Когда он был еще начинающим учёным в Новой Зеландии, там делался отбор из оканчивающих университет с тем, чтобы наиболее одаренному дать степендию для продолжения научной работы в Кембридже. Я не помню, кто был первым кандидатом, но Резерфорд был выбран вторым. Как известно, только случайно первый кандидат не поехал и поехал Резерфорд. Из истории науки известно, что такие ошибки в отборе делаются часто, и обычно их причина лежит в недостаточном умении оценивать творческие качества начинающего учёного и в преувеличенной оценке его способностей заучивать фактический материал.

Изучёние ранних работ такого большого учёного, как Резерфорд, с этой точки зрения имеет большой интерес, так как показывает генезис развития его творческих качеств. Эти работы теперь почти забыты, поскольку методы, которыми они были сделаны, теперь устарели и количественные результаты теперь во много раз точнее. Но какой важный материал они дают, чтобы видеть, как проявлялся творческий талант Резерфорда!

Изучая эти работы, видим, что с самого начала его деятельности Резерфорда нельзя отнести к учёным с большой эрудицией. Но его творческое воображение и смелость в построении научных гипотез, интуитивное чутье являлись главными факторами, определившими успех в его научных изысканиях.

Конечно, теперь всё это хорошо известно по тем фундаментальным открытиям, которые сделаны Резерфордом. Главная трудность задачи, стоящей перед организатором науки, - это уметь обнаружить талант у таких учёных, как Резерфорд, когда они ещё молоды.

Сейчас сравнительно мало интересуются оригинальными работами великих классиков науки. Обычно знакомятся с их достижениями в учебниках, монографиях, энциклопедиях. Конечно, с познавательной целью это вполне оправдано, но для учёного, которому предстоит стать руководителем молодежи, организатором научной работы коллектива, главным фактором, обеспечивающим успех его деятельности, явится отбор кадров по их творческим качествам. Одним из наиболее действенных путей для того, чтобы научиться оценивать творческие способности молодежи, является изучёние оригинальных работ больших учёных. Этим нельзя пренебрегать. Меня лично знакомство с работами таких учёных, как Максвелл , Рэлей, Кюри , Лебедев , научило многому, и, кроме того, это доставляет ещё эстетическое наслаждение. Проявления творческого таланта человека всегда красивы, и ими нельзя не любоваться! Мой жизненный опыт показывает, что в оценке творческих качеств молодых учёных и проявляется основной талант руководителя научного института. Без этих способностей учёный не может подобрать сильный научный коллектив для своей школы.

Несомненно, Резерфорд был одним из самых одарённых организаторов науки, и его главный талант состоял в умении отбора молодых учёных по их творческим способностям. Резерфорд умел также правильно оценить характер способностей учёного, что исключительно важно для успешного развития его творческого дарования.

Отвечая на вопрос, поставленный в начале о роли личности в развитии науки, и подводя итог сказанному, приходим к заключению, что хотя путь науки предопределён, но движение по этому пути обеспечивается только работами очень небольшого числа исключительно одаренных людей. Качество отбора творчески одарённых учёных и есть основной фактор, обеспечивающий высокий уровень развития науки. Очень важно для успешного развития науки создание благоприятных условий для развития природных талантов учёного, для этого надо делать творческую работу привлекательной. Это следует делать общественным организациям, которые, давая правильные оценки достижениям учёных, также давали бы им почувствовать, что их деятельность нужна и полезна человечеству. В науке общественную оценку следует делать в интернациональном масштабе, поскольку научные достижения принадлежат всему человечеству.

Такие люди, как Резерфорд , перестают быть только национальной гордостью того государства, где они родились и работали, они становятся гордостью всего человечества».

Капица П.Л., Роль выдающегося учёного в развитии науки (Доклад на открытии Международного коллоквиума, посвящённого 100-летию со дня рождения Э. Резерфорда. Москва, 20 августа 1971 г.) / Научные труды. Наука и современное общество, «Наука», М., 1998 г., с. 391-396.

Учёные, их вклад в развитие биологии .

Учёный

Его вклад в развитие биологии

Гиппократ 470-360 до н.э.

Первый учёный, создавший медицинскую школу. Древнегреческий врач, сформулировал учение о четырёх основных типах телосложения и темперамента, описал некоторые кости черепа, позвонки, внутренние органы, суставы, мышцы, крупные сосуды.

Аристотель

384-322 до н.э.

Один из основателей биологии как науки, впервые обобщил биологические знания, накопленные до него человечеством. Создал систематику животных, посвятил многие работы происхождению жизни.

Клавдий Гален

130-200 н.э.

Древнеримский учёный и врач. Заложил основы анатомии человека. Медик, хирург и философ. Гален внёс весомый вклад в понимание многих научных дисциплин, включая анатомию, физиологию, патологию, фармакологию и неврологию, а также философию и логику.

Авиценна 980-1048 г.

Выдающийся учёный в области медицины. Автор многих книг и работ по восточной медицине. Самый известный и влиятельный философ-учёный средневекового исламского мира. От того времени в современной анатомической номенклатуре сохранилось множество арабских терминов.

Леонардо да Винчи 1452-1519

Описал многие растения, изучал строение тела человека, деятельность сердца, зрительную функцию. Сделал 800 точных рисунков костей, мышц, сердца и научно описал их. Его рисунки – первые анатомически верные изображения тела человека, его органов, систем органов с натуры.

Андреас Везалий

1514-1564

Основоположник описательной анатомии. Создал труд «О строении человеческого тела».

Изучая труды и его взгляды на строение человеческого тела, Везалий исправил свыше 200 ошибок канонизированного античного автора. Также исправил ошибку Аристотеля о том, что мужчина имеет 32 зуба, а женщина 38. Классифицировал зубы на резцы, клыки и моляры. Трупы ему приходилось тайно добывать на кладбище, так как в то время вскрытие трупа человека было запрещено церковью.

Уильям Гарвей

1578-1657

Открыл круги кровообращения.

ГАРВЕЙ Уильям (1578-1657), английский врач, основатель современных наук физиологии и эмбриологии. Описал большой и малый круги кровообращения. Заслугой Гарвея,
в частности, является то, что именно он
экспериментально доказал наличие замкнутого
круга кровообращения у человека, частями
которого являются артерии и вены, а сердце –
насосом. Впервые высказал мысль, что «все живое происходит из яйца».

Карл Линней 1707-1778

Линней - создатель единой системы классификации растительного и животного мира, в которой были обобщены и в значительной степени упорядочены знания всего предыдущего периода развития . Среди главных заслуг Линнея - введение точной терминологии при описании биологических объектов, внедрение в активное употребление , установление чёткого соподчинения между .

Карл Эрнст Бэр 1792-1876г.

Профессор Петербургской медико-хирургической академии. Открыл яйцеклетку у млекопитающих, описал стадию бластулы, изучил эмбриогенез цыпленка, установил сходство эмбрионов высших и низших животных, теорию последовательного появление в эмбриогенезе признаков типа, класса, отряда и т.п. Изучая внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи. Основатель эмбриологии, сформулировал закон зародышевого сходства (установил основные типы эмбрионального развития).

Жан Батист Ламарк 1744-1829г.

Биолог, создавший первую целостную теорию эволюции живого мира. Ламарк ввел термин " биология " (1802). Ламарку принадлежат два закона эволюции:
1. Витализм. Живыми организмами управляет внутреннее стремление к совершенствованию. Изменения условий сразу вызывают изменения привычек и посредством упражнений соответствующие органы изменяются.
2. Приобретенные изменения наследуются.

Жорж Кювье 1769-1832г.

Создатель палеонтологии – науки об ископаемых животных и растениях. Автор «теории катастроф»: после катастрофических событий, уничтожавших животных, возникали новые виды, но проходило время, и снова происходила катастрофа, приводившая к вымиранию живых организмов, но природа возрождала жизнь, и появлялись хорошо приспособленные к новым условиям окружающей среды виды, затем снова погибавшие во время страшной катастрофы.

Т.Шванн и М. Шлейден

1818-1882г., 1804-1881г.

Ч. Дарвин

1809-1882г.

Создал теорию эволюции, эволюционное учение. Сущность эволюционного учения заключается в следующих основных положениях:
Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.
Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.
В основе преобразования видов в природе лежат такие свойства организмов, как наследственность и изменчивость, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.
Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.

Г. Мендель

1822-1884г.

Основоположник генетики как науки.

1 закон : Единообразие гибридов первого поколения. При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.
2 закон : Расщепление признаков. При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.
3 закон : Закон независимого наследования . При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р. Кох 1843-1910

Один из основателей микробиологии. В 1882 году Кох сообщил о своем открытии возбудителя туберкулеза, за которое был удостоен Нобелевской премии и мировой славы. В 1883 году опубликована еще одна классическая работа Коха – о возбудителе холеры. Этот выдающийся успех был достигнут им в результате изучения холерных эпидемий в Египте и Индии.

Д. И. Ивановский 1864-1920г.

Русский физиолог растений и микробиолог, основоположник вирусологии. Открыл вирусы.

Установил наличие фильтрующихся вирусов, являвшихся причинами болезни наряду с видимыми в микроскоп микробами. Это дало начало новой отрасли науки - вирусологии, которая получила бурное развитие в 20 в.

И. Мечников

1845-1916г.

Заложил основы иммунологии. Российский биолог и патолог, один из основоположников сравнительной патологии, эволюционной эмбриологии и отечественной микробиологии, иммунологии, создатель учения о фагоцитозе и теории иммунитета, создатель научной школы, член-корреспондент (1883), почетный член (1902) Петербургской АН. Совместно с Н. Ф. Гамалеей основал (1886) первую в России бактериологическую станцию. Открыл (1882) явление фагоцитоза. В трудах «Невосприимчивость в инфекционных болезнях» (1901) изложил фагоцитарную теорию иммунитета. Создал теорию происхождения многоклеточных организмов.

Л. Пастер 1822-1895г.

Заложил основы иммунологии.

Л. Пастер является основоположником научной иммунологии, хотя и до него был известен метод предупреждения оспы путем заражения людей коровьей оспой, разработанный английским врачом Э. Дженнером. Однако этот метод не был распространен на профилактику других болезней.

И. Сеченов

1829-1905г.

Физиолог. Заложил основы изучения высшей нервной деятельности. Сеченов открыл так называемое центральное торможение - особые механизмы в головном мозге лягушки, подавляющие или угнетающие рефлексы. Это было совершенно новое явление, которое получило название "сеченовского торможения". Открытое Сеченовым явление торможения позволило установить, что вся нервная деятельность складывается из взаимодействия двух процессов - возбуждения и торможения.

И. Павлов 1849-1936г.

Физиолог. Заложил основы изучения высшей нервной деятельности. Создал учение об условных рефлексах. Далее идеи И. М. Сеченова получили развитие в трудах И.П. Павлова, который открыл пути объективного экспериментального исследования функций коры, разработал метод выработки условных рефлексов и создал учение о высшей нервной деятельности. Павлов в своих трудах ввел деление рефлексов на безусловные, которые осуществляются врожденными, наследственно закрепленными нервными путями, и условные, которые, согласно взглядам Павлова, осуществляются посредством нервных связей, формирующихся в процессе индивидуальной жизни человека или животного.

Гуго де Фриз

1848–1935г.

Создал мутационную теорию. Гуго де Фриз (1848–1935) - голландский ботаник и генетик, один из основателей учения об изменчивости и эволюции, провёл первые систематические исследования мутационного процесса. Исследовал явление плазмолиза (сокращения клеток в растворе, концентрация которого выше концентрации их содержимого) и в итоге разработал метод определения осмотического давления в клетке. Ввёл понятие «изотонический раствор».

Т. Морган 1866-1943г.

Создал хромосомную теорию наследственности.

Основным объектом, с которым работали Т. Морган и его ученики, была плодовая мушка дрозофила, имеющая диплоидный набор из 8 хромосом. Эксперименты показали что гены, находящиеся в одной хромосоме при мейозе попадают в одну гамету, т. е. наследуются сцепленно. Это явление получило название закона Моргана. Было также показано что у каждого гена в хромосоме есть строго определенное место - локус.

В. И. Вернадский

1863-1945

Основал учение о биосфере. Идеи Вернадского сыграли выдающуюся роль в становлении современной научной картины мира. В центре его естественнонаучных и философских интересов - разработка целостного учения о биосфере, живом веществе (организующем земную оболочку) и эволюции биосферы в ноосферу, в которой человеческий разум и деятельность, научная мысль становятся определяющим фактором развития, мощной силой, сравнимой по своему воздействию на природу с геологическими процессами. Учение Вернадского о взаимоотношении природы и общества оказало сильное влияние на формирование современного экологического сознания. 1884-1963

Разработал учение о факторах эволюции. Ему принадлежат многочисленные труды по вопросам эволюционной морфологии, по изучению закономерностей роста животных, по вопросам о факторах и закономерностях эволюционного процесса. Ряд работ посвящен истории развития и сравнительной анатомии. Предложил свою теорию роста животных организмов, в основе к-рой лежит представление об обратном соотношении между скоростью роста организма и скоростью его дифференцировки. В ряде исследований разработал теорию стабилизирующего отбора как существенного фактора эволюции. С 1948 занимается изучением вопроса о происхождении наземных позвоночных.

Дж. Уотсон (1928г.) и Ф. Крик (1916- 2004г)

1953г. Установили структуру ДНК. Джеймс Дьюи Уотсон – американский специалист по молекулярной биологии, генетик и зоолог; более всего известен участием в открытии структуры ДНК в 1953-м. Лауреат Нобелевской премии по физиологии и медицине.

После успешного окончания Университета Чикаго и Университета Индианы Уотсон некоторое время вел исследования по химии вместе с биохимиком Германом Калькаром в Копенгагене. Позже он перебрался в лабораторию Кэвендиша при Университете Кембриджа, где ему впервые довелось встретить его будущего коллегу и товарища Фрэнсиса Крика.

До идеи двойной спирали ДНК Уотсон и Крик додумались в середине марта 1953-го, изучая собранные и Морисом Уилкинсом экспериментальные данные. Объявил об открытии сэр Лоуренс Брэгг, директор лаборатории Кэвендиш.