Все про большой взрыв вселенной. Большой Взрыв

Большой взрыв относится к разряду теорий, пытающихся в полном объеме проследить историю рождения Вселенной, определить начальные, текущие и конечные процессы в ее жизни.

Было ли что-то до того, как появилась Вселенная? Этот краеугольный, практически метафизический вопрос задается учеными и по сегодняшний день. Возникновение и эволюция мироздания всегда были и остаются предметом жарких споров, невероятных гипотез и взаимоисключающих теорий. Основными версиями происхождения всего, что нас окружает, по церковной трактовке предполагалось божественное вмешательство, а научный мир поддерживал гипотезу Аристотеля о статичности мироздания. Последней модели придерживался Ньютон, защищавший безграничность и постоянство Вселенной, и Кант, развивший эту теорию в своих трудах. В 1929 году американский астроном и космолог Эдвин Хаббл кардинально изменил взгляды ученых на мир.

Он не только обнаружил наличие многочисленных галактик, но и расширение Вселенной – непрерывное изотропное увеличение размеров космического пространства, начавшееся в миг Большого взрыва.

Кому мы обязаны открытием Большого взрыва?

Работы Альберта Эйнштейна над теорией относительности и его гравитационные уравнения позволили де Ситтеру создать космологическую модель Вселенной. Дальнейшие изыскания были привязаны к этой модели. В 1923 г. Вейль предположил, что помещенное в космическом пространстве вещество должно расширяться. Огромное значение в разработке этой теории имеет работа выдающегося математика и физика А. А. Фридмана. Еще в 1922 г. он допустил расширение Вселенной и сделал обоснованные выводы о том, что начало всей материи находилось в одной безгранично плотной точке, а развитие всему дал Большой взрыв. В 1929 г. Хаббл опубликовал свои статьи, объясняющие подчинение лучевой скорости расстоянию, впоследствии эта работа стала называться «законом Хаббла».

Г. А. Гамов, опираясь на теорию Фридмана о Большом взрыве, разработал идею о высокой температуре исходного вещества. Также он предположил наличие космического излучения, не пропавшего с расширением и остыванием мира. Ученый выполнил предварительные расчеты возможной температуры остаточного излучения. Предполагаемое им значение находилось в диапазоне 1-10 К. К 1950 г. Гамов сделал более точные подсчеты и объявил результат в 3 К. В 1964 радиоастрономы из Америки, занимаясь усовершенствованием антенны, путем исключения всех возможных сигналов, определили параметры космического излучения. Его температура оказалась равной 3 К. Эти сведения стали важнейшим подтверждением работы Гамова и существования реликтового излучения. Последующие измерения космического фона, проведенные в открытом космосе, окончательно доказали верность расчетов ученого. Ознакомится с картой реликтового излучения можно по .

Современные представления о теории Большого взрыва: как это произошло?

Одной из моделей, комплексно объясняющих появление и процессы развития известной нам Вселенной, стала теория Большого взрыва. Согласно широко принятой сегодня версии, изначально присутствовала космологическая сингулярность – состояние, обладающее бесконечной плотностью и температурой. Физиками было разработано теоретическое обоснование рождения Вселенной из точки, имевшей чрезвычайную степень плотности и температуры. После возникновения Большого взрыва пространство и материя Космоса начали непрекращающийся процесс расширения и стабильного охлаждения. Согласно последним исследованиям начало мирозданию было положено не менее 13,7 млрд. лет назад.

Отправные периоды в формировании Вселенной

Первый момент, воссоздание которого допускается физическими теориями, – это Планковская эпоха, формирование которой стало возможным спустя 10-43 секунд после Большого взрыва. Температура материи доходила до 10*32 К, а ее плотность равнялась 10*93 г/см3. В этот период гравитация обрела самостоятельность, отделившись от основополагающих взаимодействий. Непрекращающееся расширение и снижение температуры вызвали фазовый переход элементарных частиц.

Следующий период, характеризующийся показательным расширением Вселенной, наступил еще через 10-35 секунд. Его назвали «Космической инфляцией». Произошло скачкообразное расширение, во много раз превышающее обычное. Этот период дал ответ на вопрос, почему температура в различных точках Вселенной одинакова? После Большого взрыва вещество не сразу разлетелось по Вселенной, еще 10-35 секунд оно было довольно компактным и в нем установилось тепловое равновесие, не нарушенное при инфляционном расширении. Период дал базовый материал – кварк-глюонную плазму, использовавшуюся для формирования протонов и нейтронов. Этот процесс осуществился после дальнейшего уменьшения температуры, он именуется «бариогенезисом». Зарождение материи сопровождалось одновременным возникновением антиматерии. Два антагонистичных вещества аннигилировали, становясь излучением, но количество обычных частиц превалировало, что и позволило возникнуть Вселенной.

Очередной фазовый переход, произошедший после убывания температуры, привел к возникновению известных нам элементарных частиц. Пришедшая вслед за этим эпоха «нуклеосинтеза» ознаменовалась объединением протонов в легкие изотопы. Первые образованные ядра имели короткий срок существования, они распадались при неизбежных столкновениях с другими частицами. Более устойчивые элементы возникли уже после трех минут, прошедших после сотворения мира.

Следующей знаменательной вехой стало доминирование гравитации над другими имеющимися силами. Через 380 тыс. лет со времени Большого взрыва появился атом водорода. Увеличение влияния гравитации послужило окончанием начального периода формирования Вселенной и дало старт процессу возникновения первых звездных систем.

Даже спустя почти 14 млрд. лет в космосе все еще сохранилось реликтовое излучение. Его существование в комплексе с красным смещением приводится как аргумент в подтверждение состоятельности теории Большого взрыва.

Космологическая сингулярность

Если, используя общую теорию относительности и факт непрерывного расширения Вселенной, вернутся к началу времени, то размеры мироздания будут равны нулю. Начальный момент или наука не может достаточно точно описать, используя физические знания. Применяемые уравнения, не подходят для столь малого объекта. Необходим симбиоз, способный соединить квантовую механику и общую теорию относительности, но он, к сожалению, пока еще не создан.

Эволюция Вселенной: что ее ожидает в будущем?

Ученые рассматривают два возможных варианта развития событий: расширение Вселенной никогда не закончится, или же она достигнет критической точки и начнется обратный процесс – сжатие. Этот основополагающий выбор зависит от величины средней плотности вещества, находящегося в ее составе. Если вычисленное значение меньше критического, прогноз благоприятный, если больше, то мир вернется к сингулярному состоянию. Ученые в настоящее время не знают точной величины описываемого параметра, поэтому вопрос о будущем Вселенной завис в воздухе.

Отношение религии к теории Большого взрыва

Основные вероисповедания человечества: католицизм, православие, мусульманство, по-своему поддерживают эту модель сотворения мира. Либеральные представители этих религиозных конфессий соглашаются с теорией возникновения мироздания в результате некоего необъяснимого вмешательства, определяемого как Большой взрыв.

Знакомое всему миру имя теории – «Большой взрыв» – было невольно подарено противником версии о расширении Вселенной Хойлом. Он считал такую идею «совершенно неудовлетворительной». После публикации его тематической лекций занятный термин тут же подхватила общественность.

Причины, вызвавшие Большой взрыв, достоверно неизвестны. По одной из многочисленных версий, принадлежащей А. Ю. Глушко, сжатое в точку исходное вещество было черной гипер-дырой, а причиной взрыва стал контакт двух таких объектов, состоящих из частиц и античастиц. При аннигиляции материя частично уцелела и дала начало нашей Вселенной.

Инженеры Пензиас и Уилсон, открывшие реликтовое излучение Вселенной, получили Нобелевские премии по физике.

Показатели температуры реликтового излучения изначально было очень высоким. Спустя несколько миллионов лет этот параметр оказался в пределах, обеспечивающих зарождение жизни. Но к этому периоду успело сформироваться лишь небольшое количество планет.

Астрономические наблюдения и исследования помогают найти ответы на важнейшие для человечества вопросы: «Как все появилось, и что ждет нас в будущем?». Вопреки тому, что не все проблемы решены, и первопричина появления Вселенной не имеет строгого и стройного разъяснения, теория Большого взрыва обрела достаточное количество подтверждений, делающих ее основной и приемлемой моделью возникновения мироздания.

«Для меня жизнь слишком коротка, чтобы беспокоиться о вещах мне неподвластных и, может, даже несбыточных. Вот спрашивают: «А вдруг Землю поглотит чёрная дыра, или возникнет искажение пространства-времени - это же повод для волнения?» Мой ответ: «нет», - потому что мы об этом узнаем, только когда оно достигнет нашего… нашего места в пространстве-времени. Мы получаем толчки, когда природа решает, что настало время: будь то скорость звука, скорость света, скорость электрических импульсов - мы всегда будем жертвами временной задержки между окружающей нас информацией и нашей способностью её получить »

Нил Деграсс Тайсон

Время – удивительная штука. Оно дарит нам прошлое, настоящее и будущее. Из-за времени у всего, что нас окружает, есть возраст. Например, возраст Земли составляет примерно 4,5 миллиарда лет. Примерно столько же лет назад загорелась и ближайшая к нам звезда – Солнце. Если эта цифра кажется вам умопомрачительной, не стоит забывать, что задолго до образования нашей родной Солнечной системы появилась галактика, в которой мы живем – Млечный путь. По последним оценкам ученых , возраст Млечного пути составляет 13,6 миллиардов лет. Но ведь мы точно знаем, что у галактик тоже есть прошлое, а космос просто огромен, поэтому нужно смотреть еще дальше. И это размышление неизбежно приводит нас к моменту, когда все началось – Большому Взрыву.

Эйнштейн и Вселенная

Восприятие окружающего мира людьми всегда было неоднозначным. Кто-то до сих пор не верит в существование огромной Вселенной вокруг нас, кто-то считает Землю плоской. До научного прорыва в 20 веке существовала всего пара версий происхождения мира. Приверженцы религиозных взглядов верили в божественное вмешательство и творение высшего разума, несогласных иногда сжигали. Была и другая сторона, которая верила, что окружающий нас мир, равно как и Вселенная, бесконечен.

Для многих людей все изменилось тогда, когда в 1917 году с докладом выступил Альберт Эйнштейн, представив широкой публике труд своей жизни – Общую теорию относительности. Гений 20-го века связал пространство-время с материей космоса с помощью выведенных им уравнений. В результате этого получалось, что Вселенная конечна, неизменна в размерах и имеет форму правильного цилиндра.

На заре технического прорыва опровергнуть слова Эйнштейна не мог никто, поскольку его теория была слишком сложна даже для величайших умов начала 20 века. Поскольку других вариантов не было, модель цилиндрической стационарной Вселенной была принята научным сообществом как общепринятая модель нашего мира. Впрочем, прожить она смогла всего несколько лет. После того, как физики смогли оправиться от научных трудов Эйнштейна и начали разбирать их по полочкам, параллельно с этим начали вноситься коррективы в теорию относительности и конкретные расчеты немецкого ученого.

В 1922 году в журнале «Известия физики» внезапно выходит статья российского математика Александра Фридмана, в которой тот заявляет, что Эйнштейн ошибся и наша Вселенная не стационарна. Фридман объясняет, что утверждения немецкого ученого относительно неизменности радиуса кривизны пространства – заблуждения, на самом деле радиус изменяется относительно времени. Соответственно, Вселенная должна расширяться.

Более того, здесь же Фридман привел свои предположения относительно того, как именно может расширяться Вселенная. Всего модели было три: пульсирующая Вселенная (предположение того, что Вселенная расширяется и сжимается с некоей периодичностью во времени); расширяющаяся Вселенная из массы и третья модель – расширение из точки. Поскольку в те времена других моделей не существовало, за исключением божественного вмешательства, то физики быстро взяли на заметку все три модели Фридмана и начали разрабатывать их в своем направлении.

Работа российского математика слегка уязвила Эйнштейна, и в том же году он публикует статью, в которой высказывает свои замечания относительно трудов Фридмана. В ней немецкий физик пытается доказать верность своих расчетов. Вышло это довольно неубедительно, и когда боль от удара по самооценке немного спала, Эйнштейн выпустил еще одну заметку в журнале «Известия физики», в которой сказал:

«В предыдущей заметке я подверг критике названную выше работу. Однако моя критика, как я убедился из письма Фридмана, сообщенного мне г-ном Крутковым, основывалась на ошибке в вычислениях. Я считаю результаты Фридмана правильными и проливающими новый свет ».

Ученым пришлось признать, что все три модели Фридмана появления и существования нашей Вселенной абсолютно логичны и имеют право на жизнь. Все три объясняются понятными математическими расчетами и не оставляют вопросов. Кроме одного: с чего бы Вселенной начинать расширяться?

Теория, которая изменила мир

Заявления Эйнштейна и Фридмана привели к тому, что ученое сообщество всерьез задалось вопросом происхождения Вселенной. Благодаря общей теории относительности появился шанс пролить свет на наше прошлое, и физики не преминули этим воспользоваться. Одним из ученых, попытавшимся представить модель нашего мира, стал астрофизик Жорж Леметр из Бельгии. Примечателен тот факт, что Леметр был католическим священником, но при этом занимался математикой и физикой, что для нашего времени настоящий нонсенс.

Жорж Леметр заинтересовался уравнениями Эйнштейна, и с их помощью смог вычислить, что наша Вселенная появилась в результате распада некоей суперчастицы, которая находилась вне пространства и времени до начала деления, которое можно фактически считать взрывом. При этом физики отмечают, что Леметр первым пролил свет на рождение Вселенной.

Теория взорвавшегося суператома устроила не только ученых, но также и духовенство, которое было очень недовольно современными научными открытиями, под которые приходилось придумать новые толкования Библии. Большой взрыв не вступал в существенные противоречия с религией, возможно на это повлияло воспитание самого Леметра, который посвятил свою жизнь не только науке, но и служению Богу.

22 ноября 1951 года Папа Римский Пий XII сделал заявление , что Теория большого взрыва не конфликтует с Библией и католическими догмами о возникновении мира. Православные священнослужители также заявили, что относятся к этой теории положительно. Эту теорию относительно нейтрально восприняли и приверженцы других религий, некоторые из них даже сказали, что в их священных писаниях есть упоминания о Большом Взрыве.

Впрочем, несмотря на то, что Теория Большого Взрыва на данный момент является общепринятой космологической моделью, она завела многих ученых в тупик. С одной стороны, взрыв суперчастицы отлично вписывался в логику современной физики, но с другой в результате такого взрыва могли образоваться, в основном, лишь тяжелые металлы, в частности железо. Но, как оказалось, Вселенная состоит, в основном, из сверхлегких газов – водорода и гелия. Что-то не сходилось, поэтому физики продолжили работу над теорией происхождения мира.

Изначально термина «Большой взрыв» не существовало. Леметр и другие физики предлагали лишь скучное название «динамическая эволюционирующая модель», что вызывало зевоту у студентов. Лишь в 1949 году на одной из своих лекций британский астроном и космолог Фрейд Хойл произнес:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной» .

С тех пор этот термин стал широко использоваться в научных кругах и представлении широкой общественности об устройстве Вселенной.

Откуда появились водород и гелий

Наличие легких элементов поставило физиков в тупик, и многие приверженцы Теории Большого Взрыва задались целью найти их источник. На протяжении многих лет им не удавалось добиться особых успехов, пока в 1948 году гениальный ученый Георгий Гамов из Ленинграда наконец не смог установить этот источник. Гамов был одним из учеников Фридмана, поэтому с удовольствием взялся за разработку теории своего преподавателя.

Гамов постарался представить жизнь Вселенной в обратном направлении, и отмотал время до того момента, когда она только начала расширяться. К тому времени, как известно, человечество уже открыло принципы термоядерного синтеза, поэтому теория Фридмана-Леметра получила право на жизнь. Когда Вселенная была совсем маленькой, она была очень горячей, согласно законам физики.

По мнению Гамова, спустя всего секунду после Большого взрыва, пространство новой Вселенной заполнили элементарные частицы, которые начали взаимодействовать друг с другом. В результате этого начался термоядерный синтез гелия , который смог рассчитать для Гамова математик из Одессы Ральф Ашер Альфер. Согласно подсчетам Альфера, уже спустя пять минут после Большого взрыва Вселенная была заполнена гелием на столько, что даже убежденным противникам Теории Большого Взрыва придется смириться и принять эту модель, как основную в космологии. Своими исследованиями Гамов не только открыл новые пути изучения Вселенной, но также воскресил теорию Леметра.

Несмотря на стереотипы об ученых, им нельзя отказать в романтизме. Свои исследования относительно теории Супергорячей Вселенной в момент Большого взрыва Гамов опубликовал в 1948 году в работе «Происхождение химических элементов». В качестве коллег-помощников он указал не только Ральфа Ашера Альфера, но и Ханса Бете – американского астрофизика и будущего лауреата Нобелевской премии. На обложке книги получилось: Альфер, Бете, Гамов. Ничего не напоминает?

Впрочем, несмотря на то, что труды Леметра получили вторую жизнь, физики до сих пор не могли ответить на самый волнующий вопрос: а что было до Большого Взрыва?

Попытки воскресить стационарную Вселенную Эйнштейна

Не все ученые были согласны с теорией Фридмана-Леметра, но, несмотря на это, им приходилось преподавать в университетах общепринятую космологическую модель. Например астроном Фред Хойл, который сам же и предложил термин «Большой Взрыв», на самом деле считал, что никакого взрыва не было, и посвятил свою жизнь попыткам это доказать.
Хойл стал одним из тех ученых, которые в наше время предлагают альтернативные взгляд на современный мир. Большинство физиков довольно прохладно относятся к заявлениям подобных людей, но это ничуть их не смущает.

Чтобы посрамить Гамова и его обоснования Теории Большого Взрыва, Хойл вместе с единомышленниками решили разработать свою модель происхождения Вселенной. За ее основу они взяли предложения Эйнштейна о том, что Вселенная стационарна, и внесли некоторые коррективы, предлагающие альтернативные причины расширения Вселенной.

Если приверженцы теории Леметра-Фридмана считали, что Вселенная возникла из одной единственной сверхплотной точки с бесконечно малым радиусом, то Хойл предположил, что материя образуется постоянно из точек, которые находятся между удаляющимися друг от друга галактиками. В первом случае, из одной частицы образовалась вся Вселенная, с ее бесконечным числом звезд и галактик. В другом случае, одна точка дает вещества столько, сколько достаточно для производства всего одной галактики.

Несостоятельность теории Хойла в том, что он так и не смог объяснить, откуда берется то самое вещество, которое продолжает создавать галактики, в которых находятся сотни миллиардов звезд. Фактически Фред Хойл предлагал всем поверить, что структура Вселенной возникает из ниоткуда. Несмотря на то, что многие физики пытались найти решение теории Хойла, никому так и не удалось этого сделать, и спустя пару десятилетий это предложение утратило свою актуальность.

Вопросы без ответов

На самом деле Теория Большого Взрыва также не дает нам ответы на многие вопросы. Например, в уме обычного человека не может уложиться тот факт, что вся окружающая нас материя некогда была сжата в одну точку сингулярности, которая по своим размерам намного меньше атома. И как так получилось, что эта суперчастица нагрелась до такой степени, что запустилась реакция взрыва.

До середины 20 века теория расширяющейся Вселенной так и не была подтверждена экспериментально, поэтому не имела широкого распространения в учебных заведениях. Все изменилось в 1964 году, когда двое американских астрофизиков — Арно Пензиас и Роберт Вильсон – не решили заняться исследованием радиосигналов звездного неба.

Сканируя излучение небесных тел, а именно Кассиопеи А (один из мощнейших источников радиоизлучения на звездном небе) ученые заметили какой-то посторонний шум, который постоянно мешал зафиксировать точные данные по излучению. Куда бы они ни направили свою антенну, в какое бы время суток они не начинали свои исследования – этот характерный и постоянный шум всегда преследовал их. Разозлившись до определенной степени, Пензиас и Вильсон решили изучить источник этого шума и неожиданно совершили открытие, которое изменило мир. Они открыли реликтовое излучение, которое является отголоском того самого Большого Взрыва.

Наша Вселенная остывает гораздо медленнее, чем чашка горячего чая, и реликтовое излучение свидетельствует о том, что некогда окружающая нас материя была очень горяча, и теперь охлаждается по мере расширения Вселенной. Таким образом, все теории, связанные с холодной Вселенной, остались за бортом, и на вооружение была окончательно принята Теория Большого Взрыва.

В своих трудах Георгий Гамов предполагал, что в космосе удастся обнаружить фотоны, которые существуют с момента Большого Взрыва, нужно лишь более совершенное техническое оснащение. Реликтовое излучение подтверждало все его предположения относительно существования Вселенной. Также с его помощью удалось установить, что возраст нашей Вселенной составляет примерно 14 миллиардов лет.

Как и всегда, при практическом доказательстве какой-либо теории, сразу возникает множество альтернативных мнений. Некоторые физики с насмешкой восприняли открытие реликтового излучения как свидетельство Большого Взрыва. Несмотря на то, что Пензиас и Вильсон стали лауреатами Нобелевской премии за свое историческое открытие, появилось множество несогласных с их исследованиями.

Основными аргументами в пользу несостоятельности расширения Вселенной стали несовпадения и логические ошибки. Например, взрыв равноускорил все галактики в космосе, однако вместо того, чтобы удаляться от нас, галактика Андромеды медленно, но верно приближается к Млечному Пути. Ученые предполагают, что эти две галактики столкнутся между собой всего через каких-то 4 миллиарда лет. К сожалению, человечество пока слишком молодо, чтобы ответить на этот и другие вопросы.

Теория равновесия

В наше время физики предлагают различные модели существования Вселенной. Многие из них не выдерживают даже простой критики, другие же получают право на жизнь.

В конце 20 века астрофизик из Америки Эдвард Трайон вместе со своим коллегой из Австралии Уорреном Керри предложили принципиально новую модель Вселенной, при этом сделали это независимо друг от друга. В основу своих исследований ученые положили предположение, что во Вселенной все уравновешено. Масса уничтожает энергию, и наоборот. Такой принцип стали называть принципом Нулевой Вселенной. В рамках этой Вселенной новое вещество возникает в точках сингулярности между галактиками, где притяжение и отталкивание материи уравновешено.

Теорию Нулевой Вселенной не разнесли в пух и прах потому, что спустя некоторое время ученые смогли открыть существование темной материи – загадочной субстанции, из которой почти на 27% состоит наша Вселенная. Еще 68,3% Вселенной составляет более таинственная и загадочная темная энергия.

Именно благодаря гравитационным эффектам темной энергии и приписывают ускорение расширения Вселенной. К слову, наличие темной энергии в космосе предсказал еще сам Эйнштейн, который видел, что в его уравнениях что-то не сходится, Вселенную не получалось сделать стационарной. Поэтому он ввел в уравнения космологическую постоянную – Лямбда-член, за что потом неоднократно себя винил и ненавидел.

Так получалось, что пустое в теории пространство во Вселенной все же заполнено неким особым полем, которое и приводит в действие модель Эйнштейна. В трезвом уме и согласно логике тех времен, существование такого поля было просто невозможным, но на деле немецкий физик просто не знал, как описать темную энергию.

***
Возможно, мы никогда не узнаем, как и из чего возникла наша Вселенная. Еще сложнее будет установить, что было до ее существования. Люди склонны бояться того, что не могут объяснить, поэтому не исключено, что до конца времен человечество будет верить в том числе и в божественное влияние на создание окружающего нас мира.

Говорят, что время – самая загадочная материя. Человек, сколько не пытается понять его законы и научиться управлять ими, всякий раз попадает впросак. Делая последний шаг к разгадке великой тайны, и считая, что она, практически, уже у нас в кармане, мы всякий раз убеждаемся, что она все так же неуловима. Однако человек – существо пытливое и поиск ответов на извечные вопросы для многих становится смыслом жизни.

Одной из таких тайн стало сотворение мира. Последователи «теории Большого взрыва», логично объясняющей происхождение жизни на Земле стали задаваться вопросом о том, что было до Большого взрыва, и было ли что-нибудь вообще. Тема для исследований благодатная, а результаты могут заинтересовать широкую общественность.

У всего на свете есть прошлое – у Солнца, Земли, Вселенной, но откуда взялось все это многообразие и что было до него?

Дать однозначный ответ вряд ли возможно, но выдвинуть гипотезы и поискать им доказательства вполне реально. В поисках истины, исследователи получили не один, а несколько ответов на вопрос «что было до Большого взрыва?». Самый популярный из них звучит несколько обескураживающе и довольно смело – Ничего. Возможно ли, что все сущее произошло из ничего? Что Ничто породило все существующее?

Собственно, это нельзя назвать абсолютной пустотой и там все равно происходят какие-то процессы? Все было порождено ничем? Ничто – полное отсутствие не только материи, молекул и атомов, но даже времени и пространства. Богатая почва для деятельности писателей-фантастов!

Мнения ученых об эпохе до Большого взрыва

Однако Ничто нельзя потрогать, к нему не применимы обычные законы, а значит, либо домысливать и выстраивать теории, либо попытаться создать условия, близкие к тем, в результате которых произошел Большой взрыв, и убедиться в правильности своих предположений. В специальных камерах, из которых были удалены частицы вещества, понизили температуру, приблизив к условиям космоса. Результаты наблюдений дали косвенные подтверждения научным теориям: ученые изучали среду, в которой теоретически мог возникнуть Большой взрыв, но назвать эту среду «Ничто» оказалось не совсем корректно. Происходящие мини-взрывы могли бы привести к более масштабному взрыву, породившему Вселенную.

Теории вселенных до Большого взрыва

Приверженцы иной теории утверждают, что до Большого взрыва существовали две другие Вселенные, развивавшиеся по собственным законам. Какими именно они были – ответить сложно, но согласно выдвигаемой теории, Большой взрыв произошел в результате их столкновения и привел к полному уничтожению прежних Вселенных и, одновременно, к рождению нашей, существующей и ныне.

Теория «сжатия» говорит о том, что Вселенная существует, и существовала всегда, меняются лишь условия ее развития, которые приводят к исчезновению жизни в одном регионе и возникновению в другом. Жизнь исчезает в результате «схлопывания» и возникает после взрыва. Как бы парадоксально это не звучало. Такая гипотеза имеет большое количество сторонников.

Есть еще одно предположение: в результате Большого взрыва из небытия возникла новая Вселенная и раздулась, словно мыльный пузырь, до гигантских размеров. В это время от нее отпочковывались «пузырьки», которые впоследствии, стали другими Галактиками и Вселенными.

Теория «естественного отбора» предполагает, что речь идет о «естественном космическом отборе», вроде того, о котором вещал Дарвин, только в более крупных размерах. У нашей Вселенной был свой предок, у него, в свою очередь, так же имелся свой предок. Согласно этой теории, нашу Вселенную породила Черная дыра. и представляют большой интерес для ученых. По этой теории для того, чтобы появилась новая Вселенная, необходимы механизмы «размножения». Таким механизмом и становится Черная дыра.

А может быть, правы те, кто считает, что по мере роста и развития наша Вселенная расширяется, идя навстречу Большому взрыву, который станет началом для новой Вселенной. Значит, когда-то давно, неизвестная и, увы, исчезнувшая Вселенная стала прародительницей нашей новой вселенной. Цикличность этой системы выглядит логично и приверженцев у данной теории немало.

До какой степени приблизились к истине последователи той или иной гипотезы – сказать сложно. Каждый выбирает то, что ближе по духу и пониманию. Религиозный мир дает на все вопросы свои ответы и укладывает картину создания мира в божественные рамки. Атеисты ищут ответы, стремясь докопаться до сути и потрогать своими руками эту самую суть. Можно удивиться, чем вызвано такое упорство в поисках ответа на вопрос о том, что было до Большого взрыва, ведь практическую пользу из этого знания извлечь довольно проблематично: человек не станет властелином Вселенной, по его слову и желанию не зажгутся новые звезды и не погаснут существующие. Но ведь так интересно то, что не изучено! Человечество бьется над разгадками тайн, и кто знает, быть может, рано или поздно, они дадутся человеку в руки. Вот только, как он этими тайными знаниями воспользуется?

Иллюстрации: КЛАУС БАХМАНН, журнал «GEO»

(25 votes, average: 4,84 out of 5)



Теория Большого взрыва сейчас считается столь же несомненной, как и система Коперника. Однако вплоть до второй половины 1960-х она отнюдь не пользовалась всеобщим признанием, и не только потому, что многие ученые с порога отрицали саму идею расширения Вселенной. Просто у этой модели имелся серьезный конкурент.

Через 11 лет космология как наука сможет отмечать свой столетний юбилей. В 1917 году Альберт Эйнштейн осознал, что уравнения общей теор ии относительности позволяют вычислять физически разумные модели мироздания. Классическая механика и теор ия гравитации такой возможности не дают: Ньютон пытался построить общую картину Вселенной, однако при всех раскладах она неизбежно схлопывалась под действием силы тяготения.

Эйнштейн решительно не верил в начало и конец мироздания и поэтому придумал вечно существующую статичную Вселенную. Для этого ему понадобилось ввести в свои уравнения особую компоненту, которая создавала "антитяготение" и тем самым формально обеспечивала стабильность мироустройства. Это дополнение (так называемый космологический член) Эйнштейн считал неэлегантным, уродливым, но все же необходимым (автор ОТО зря не поверил своему эстетическому чутью - позднее было доказано, что статичная модель неустойчива и поэтому физически бессмысл енна).

У модели Эйнштейна быстро появились конкуренты - модель мира без материи Виллема де Ситтера (1917), замкнутые и открытые нестационарные модели Александра Фридмана (1922 и 1924). Но эти красивые конструкции до поры оставались чисто математическими упражнениями. Чтобы рассуждать о Вселенной в целом не умозрительно, надо хотя бы знать, что существуют миры, расположенные за пределами звездного скопления, в котором находится Солнечная система и мы вместе с нею. А космология получила возможность искать опору в астрономических наблюдениях лишь после того, как в 1926 году Эдвин Хаббл опубликовал работу "Внегалактические туманности", где впервые было дано описание галактик как самостоятельных звездных систем, не входящих в состав Млечного пути.

Сотворение Вселенной заняло вовсе не шесть дней – основная доля работы была завершена гораздо раньше. Вот его примерная хронология.

0. Большой взрыв.

Планковская эра: 10-43 с. Планковский момент. Происходит отделение гравитационного взаимодействия. Размер Вселенной в этот момент равен 10-35 м (т.н. Планковская длина). 10-37 с. Инфляционное расширение Вселенной.

Эра великого объединения: 10-35 с. Разделение сильного и электрослабого взаимодействий. 10-12 с. Отделение слабого взаимодействия и окончательное разделение взаимодействий.

Адронная эра: 10-6 с. Аннигиляция протон-антипротонных пар. Кварки и антикварки перестают существовать, как свободные частицы.

Лептонная эра: 1 с. Формируются ядра водорода. Начинается ядерный синтез гелия.

Эра нуклеосинтеза: 3 минуты. Вселенная состоит на 75% из водорода и на 25% из гелия, а также следовых количеств тяжелых элементов.

Радиационная эра: 1 неделя. К этому времени излучение термализуется.

Эра вещества: 10 тыс. лет. Вещество начинает доминировать во Вселенной. 380 тыс. лет. Ядра водорода и электроны рекомбинируют, Вселенная становится прозрачной для излучения.

Звездная эра: 1 млрд. лет. Формирование первых галактик. 1 млрд. лет. Образование первых звезд. 9 млрд. лет. Образование Солнечной системы. 13,5 млрд. лет. Текущий момент

Разбегание галактик

Этот шанс был быстро реализован. До бельгийца Жоржа Анри Леметра, изучавшего астрофизику в Массачусетсcком технологическом институте, дошли слухи, что Хаббл вплотную подошел к революционному открытию - доказательству разбегания галактик. В 1927 году, вернувшись на родину, Леметр опубликовал (а в последующие годы уточнил и развил) модель Вселенной, образовавшейся в результате взрыва сверхплотной материи, расширяющейся в соответствии с уравнениями ОТО. Он математически доказал, что их радиальная скорость должна быть пропорциональна расстоянию от Солнечной системы. Годом позже к этому же выводу независимо пришел принстонский математик Хауард Робертсон.

А в 1929 году Хаббл получил ту же самую зависимость экспериментально, обработав данные по удаленности двадцати четырех галактик и величине красного смещения приходящего от них света. Пятью годами позже Хаббл и его ассистент-наблюдатель Милтон Хьюмасон привели новые доказательства справедливости этого вывода, осуществив мониторинг очень тусклых галактик, лежащих на крайней периферии наблюдаемого космоса. Предсказания Леметра и Робертсона полностью оправдались, и космология нестационарной Вселенной, казалось бы, одержала решительную победу.

Непризнанная модель

Но все же астрономы не спешили кричать ура. Модель Леметра позволяла оценить продолжительность существования Вселенной - для этого нужно было лишь выяснить численную величину константы, входящей в уравнение Хаббла. Попытки определить эту константу приводили к заключению, что наш мир возник всего лишь около двух миллиардов лет назад. Однако геологи утверждали, что Земля много старше, да и астрономы не сомневались, что в космосе полным-полно звезд более почтенного возраста. У астрофизиков тоже были собственные основания для недоверия: процентный состав распределения химических элементов во Вселенной на основе леметровской модели (впервые эту работу в 1942 году проделал Чандрасекар) явно противоречил реальности.

Скепсис специалистов объяснялся и философскими причинами. Астрономическое сообщество только-только свыклось с мыслью, что перед ним распахнулся бесконечный мир, населенный множеством галактик. Казалось естественным, что в своих основах он не изменяется и существует вечно. А теперь ученым предлагалось признать, что Космос конечен не только в пространстве, но и во времени (к тому же эта идея наводила на мысль о божественном творении). Поэтому леметровская теор ия долго оставалась не у дел. Впрочем, еще худшая судьба постигла модель вечно осциллирующей Вселенной, пред-ложенную в 1934 году Ричардом Толманом. Она вообще не получила серьезного признания, а в конце 1960-х годов была отвергнута как математически некорректная.

Акции "раздувающегося мира" не слишком повысились и после того, как в начале 1948 года Джордж Гамов и его аспирант Ральф Алфер построили новую, более реалистичную версию этой модели. Вселенная Леметра родилась из взрыва гипотетического "первичного атома", который явно выходил за рамки представлений физиков о природе микромира.

Гамовскую теор ию долгое время называли вполне академично - "динамическая эволюционирующая модель". А словосочетание "Большой взрыв", как ни странно, ввел в оборот не автор этой теор ии и даже не ее сторонник. В 1949 году продюсер научных программ BBC Питер Ласлетт предложил Фреду Хойлу подготовить серию из пяти лекций. Хойл блистал перед микрофоном и мгновенно приобрел множество поклонников среди радиослушателей. В последнем выступлении он заговорил о космологии, рассказал о своей модели и под конец решил свести счеты с конкурентами. Их теор ия, сказал Хойл, "основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время... Эта идея Большого взрыва кажется мне совершенно неудовлетворительной". Вот так впервые и появилось это выражение. На русский его можно перевести и как "Большой хлопок", что, вероятно, точнее соответствует уничижительному смысл у, который вложил в него Хойл. Через год его лекции были опубликованы, и новый термин пошел гулять по свету

Джордж Гамов и Ральф Алфер предположили, что Вселенная вскоре после рождения состояла из хорошо известных частиц - электронов, фотонов, протонов и нейтронов. В их модели эта смесь была нагрета до высоких температур и плотно упакована в крохотном (по сравнению с нынешним) объеме. Гамов с Алфером показали, что в этом супергорячем супе происходит термоядерный синтез, в результате которого образуется основной изотоп гелия, гелий-4. Они даже вычислили, что уже через несколько минут материя переходит в равновесное состояние, в котором на каждое ядро гелия приходится примерно десяток ядер водорода.

Такая пропорция вполне соответствовала астрономическим данным о распределении легких элементов во Вселенной. Эти выводы вскоре подтвердили Энрико Ферми и Энтони Туркевич. Они к тому же установили, что процессы термоядерного синтеза обязаны порождать немного легкого изотопа гелия-3 и тяжелые изотопы водорода - дейтерий и тритий. Сделанные ими оценки концентрации этих трех изотопов в космическом пространстве тоже совпадали с наблюдениями астрономов.

Проблемная теор ия

Но астрономы-практики продолжали сомневаться. Во-первых, оставалась проблема возраста Вселенной, которую теор ия Гамова решить не могла. Увеличить продолжительность существования мира можно было, только доказав, что галактики разлетаются много медленней, чем принято считать (в конечном счете так и произошло, причем в немалой степени с помощью наблюдений, выполненных в Паломарской обсерватории, но уже в 1960-е годы).

Во-вторых, гамовская теор ия забуксовала на нуклеосинтезе. Объяснив возникновение гелия, дейтерия и трития, она не смогла продвинуться к более тяжелым ядрам. Ядро гелия-4 состоит из двух протонов и двух нейтронов. Все было бы хорошо, если бы оно могло присоединить протон и превратиться в ядро лития. Однако ядра из трех протонов и двух нейтронов или двух протонов и трех нейтронов (литий-5 и гелий-5) крайне неустойчивы и мгновенно распадаются. Поэтому в природе существует лишь стабильный литий-6 (три протона и три нейтрона). Для его образования путем прямого синтеза необходимо, чтобы с ядром гелия одновременно слились и протон, и нейтрон, а вероятность этого события крайне мала. Правда, в условиях высокой плотности материи в первые минуты существования Вселенной подобные реакции все же изредка происходят, что и объясняет очень малую концентрацию древнейших атомов лития.

Природа приготовила Гамову еще один неприятный сюрприз. Путь к тяжелым элементам мог бы лежать и через слияние двух ядер гелия, но эта комбинация тоже нежизнеспособна. Объяснить происхождение элементов тяжелее лития никак не удавалось, и в конце 1940-х годов это препятствие казалось непреодолимым (сейчас мы знаем, что они рождаются только в стабильных и взрывающихся звездах и в космических лучах, но Гамову это не было известно).

Впрочем, у модели "горячего" рождения Вселенной оставалась в запасе еще одна карта, которая со временем стала козырной. В 1948 году Алфер и другой ассистент Гамова, Роберт Герман, пришли к выводу, что космос пронизан микроволновым излучением, возникшим спустя 300 тысяч лет после первичного катаклизма. Однако радиоастрономы не проявили интереса к этому прогнозу, и он так и остался на бумаге.

Появление конкурента

Гамов и Алфер изобрели свою "горячую" модель в столице США, где с 1934 году Гамов преподавал в университете имени Джорджа Вашингтона. Многие продуктивные идеи возникли у них под умеренную выпивку в баре "Маленькая Вена" на Пенсильвания-авеню неподалеку от Белого дома. А если этот путь к построению космологической теор ии кое-кому кажется экзотичным, что можно сказать об альтернативе, появившейся на свет под влиянием фильма ужасов?

Фред Хойл: Расширение Вселенной происходит вечно! Вещество рождается в пустоте самопроизвольно с такой скоростью, что средняя плотность Вселенной остается постоянной

В доброй старой Англии, в университетском Кембридже, после войны обосновались трое замечательных ученых - Фред Хойл, Герман Бонди и Томас Голд. Перед этим они работали в радиолокационной лаборатории британских ВМФ, где и подружились. Хойлу, англичанину из Йоркшира, к моменту капитуляции Германии еще не исполнилось и 30, а его приятелям, уроженцам Вены, стукнуло по 25. Хойл и его друзья в свою "радарную эру" отводили душу в беседах о проблемах мироздания и космологии. Все трое невзлюбили модель Леметра, но закон Хаббла приняли всерьез, а потому отвергли и концепцию статичной Вселенной. После войны они собирались у Бонди и обсуждали те же проблемы. Озарение снизошло после просмотра кинострашилки "Мертвые в ночи". Ее главный герой Уолтер Крейг попал в замкнутую событийную петлю, которая в конце картины возвратила его в ту же ситуацию, с которой все и началось. Фильм с такой фабулой может длиться бесконечно (как стишок о попе и его собаке). Тут-то Голд и сообразил, что Вселенная может оказаться аналогом этого сюжета - одновременно изменяющейся и неизменной!

Друзья сочли идею безумной, но потом решили, что в ней что-то есть. Объединенными усилиями они превратили гипотез у в связную теор ию. Бонди с Голдом дали ее общее изложение, а Хойл в отдельной публикации "Новая модель расширяющейся Вселенной" - математические расчеты. За основу он взял уравнения ОТО, но дополнил их гипотетическим "полем творения" (Creation field, С-поле), обладающим отрицательным давлением. Нечто в этом роде через 30 лет появилось в инфляционных космологических теор иях, что Хойл подчеркивал с немалым удовольствием.

Космология стабильного состояния

Новая модель вошла в историю науки как Космология стабильного состояния (Steady State Cosmology). Она провозгласила полное равноправие не только всех точек пространства (это было у Эйнштейна), но и всех моментов времени: Вселенная расширяется, но начала не имеет, поскольку всегда остается подобной себе самой. Голд назвал это утверждение совершенным космологическим принципом. Геометрия пространства в этой модели остается плоской, как и у Ньютона. Галактики разбегаются, однако в космосе "из ничего" (точнее, из поля творения) появляется новое вещество, причем с такой интенсивностью, что средняя плотность материи остается неизменной. В соответствии с известным тогда значением постоянной Хаббла Хойл вычислил, что в каждом кубометре пространства в течение 300 тысяч лет рождается всего одна частица. Сразу снимался вопрос, почему приборы не регистрируют эти процессы, - они слишком медленны по человеческим меркам. Новая космология не испытывала никаких трудностей, связанных с возрастом Вселенной, этой проблемы для нее просто не существовало.

Для подтверждения своей модели Хойл предложил воспользоваться данными о пространственном распределении молодых галактик. Если С-поле равномерно творит материю повсюду, то средняя плотность таких галактик должна быть примерно одинаковой. Напротив, модель катаклизмического рождения Вселенной предсказывает, что на дальней границе наблюдаемого космоса эта плотность максимальна - оттуда к нам приходит свет еще не успевших состариться звездных скоплений. Хойловский критерий был совершенно разумным, однако в то время проверить его не представлялось возможным из-за отсутствия достаточно мощных телескопов.

Триумф и поражение

Больше 15 лет соперничающие теор ии сражались почти на равных. Правда, в 1955 году английский радиоастроном и будущий нобелевский лауреат Мартин Райл обнаружил, что плотность слабых радиоисточников на космической периферии больше, чем около нашей галактики. Он заявил, что эти результаты несовместимы с Космологией стабильного состояния. Однако через несколько лет его коллеги пришли к выводу, что Райл преувеличил различия плотностей, так что вопрос остался открытым.

Но на двадцатом году жизни хойловская космология стала быстро увядать. К этому времени астрономы доказали, что постоянная Хаббла на порядок меньше прежних оценок, что позволило поднять предполагаемый возраст Вселенной до 10-20 млрд. лет (современная оценка - 13,7 млрд. лет ± 200 млн.). А в 1965 году Арно Пензиас и Роберт Вильсон зарегистрировали предсказанное Алфером и Германом излучение и тем самым сразу привлекли к теор ии Большого взрыва великое множество сторонников.

Вот уже сорок лет эта теор ия считается стандартной и общепризнанной космологической моделью. У нее есть и конкуренты разных возрастов, но вот теор ию Хойла всерьез никто больше не принимает. Ей не помогло даже открытие (в 1999 году) ускорения разлета галактик, о возможности которого писали и Хойл, и Бонди с Голдом. Ее время бесповоротно ушло.

Анонсы новостей

Даже современные ученые не могут с точностью сказать, что было во Вселенной до Большого взрыва. Существует несколько гипотез, приоткрывающих завесу тайны над одним из самых сложных вопросов мироздания.

Происхождение материального мира

До XX века существовало только две Сторонники религиозной точки зрения считали, что мир был создан богом. Ученые, наоборот, отказывались признавать рукотворность Вселенной. Физики и астрономы были сторонниками идеи о том, что космос существовал всегда, мир был статичен и все останется таким же, как миллиарды лет назад.

Однако ускорившийся научный прогресс на рубеже веков привел к тому, что у исследователей появились возможности для изучения внеземных просторов. Некоторые из них первыми попытались ответить на вопрос, что было во Вселенной до Большого взрыва.

Исследования Хаббла

XX столетие разрушило многие теории прошлых эпох. На освободившемся месте появились новые гипотезы, объяснившие доселе непонятные тайны. Все началось с того, что ученые установили факт расширения Вселенной. Сделано это было Эдвином Хабблом. Он обнаружил, что далекие галактики отличаются по своему свету от тех космических скоплений, которые находились ближе к Земле. Открытие этой закономерности легло в основу закона расширения Эдвина Хаббла.

Большой взрыв и происхождение Вселенной были изучены, когда стало ясно, что все галактики «убегают» от наблюдателя, в какой бы точке он ни был. Как это можно было объяснить? Раз галактики движутся, значит, их толкает вперед некая энергия. Кроме того, физики вычислили, что все миры когда-то находились в одной точке. Из-за некоего толчка они начали двигаться во все стороны с невообразимой скоростью.

Это явление и получило название «Большой взрыв». И происхождение Вселенной было объяснено именно с помощью теории об этом давнем событии. Когда оно случилось? Физики определили скорость движения галактик и вывели формулу, по которой они вычислили, когда произошел первоначальный «толчок». Точных цифр никто назвать не возьмется, но приблизительно это явление имело место около 15 миллиардов лет назад.

Появление теории Большого взрыва

Тот факт, что все галактики являются источниками света, означает, что при Большом взрыве выделилось огромное количество энергии. Именно она породила ту самую яркость, которую миры теряют по ходу своего отдаления от эпицентра произошедшего. Теория Большого взрыва впервые была доказана американскими астрономами Робертом Вильсоном и Арно Пензиасом. Они обнаружили электромагнитное реликтовое излучение, температура которого равнялась трем градусам по кельвиновской шкале (то есть -270 по Цельсию). Эта находка подтвердила идею о том, что сначала Вселенная была крайне горячей.

Теория Большого взрыва ответила на многие вопросы, сформулированные в XIX веке. Однако теперь появились новые. Например, что было во Вселенной до Большого взрыва? Почему она так однородна, в то время как при таком огромном выбросе энергии вещество должно разлететься во все стороны неравномерно? Открытия Вильсона и Арно поставили под сомнения классическую Евклидову геометрию, так как было доказано, что пространство имеет нулевую кривизну.

Инфляционная теория

Новые поставленные вопросы показывали, что современная теория возникновения мира отрывочна и неполна. Однако долгое время казалось, что продвинуться дальше открытого в 60-е годы будет невозможно. И только совсем недавние исследования ученых позволили сформулировать новый важный принцип для теоретической физики. Это было явление сверхбыстрого инфляционного расширения Вселенной. Оно было изучено и описано с помощью квантовой теории поля и общей теории относительности Эйнштейна.

Так что было во Вселенной до Большого взрыва? Современная наука называет этот период «инфляцией». Вначале было только поле, которое заполняло все воображаемое пространство. Его можно сравнить со снежком, пущенным вниз по склону снежной горы. Ком будет катиться вниз и увеличиваться в размерах. Точно так же поле из-за случайных колебаний на протяжении невообразимого времени меняло свою структуру.

Когда образовалась однородная конфигурация, произошла реакция. В ней и заключаются самые большие загадки Вселенной. Что было до Большого взрыва? Инфляционное поле, которое совсем не походило на нынешнюю материю. После реакции начался рост Вселенной. Если продолжить аналогию со снежным комом, то вслед за первым из них вниз покатились другие снежки, также увеличивавшиеся в размерах. Момент Большого взрыва в этой системе можно сравнить с той секундой, когда огромная глыба рухнула в пропасть и, наконец, столкнулась с землей. В это мгновение выделилось колоссальное количество энергии. Она не может иссякнуть до сих пор. Именно за счет продолжения реакции от взрыва наша Вселенная растет и сегодня.

Материя и поле

Сейчас Вселенная состоит из невообразимого количества звезд и других космических тел. Эта совокупность материи источает огромную энергию, что противоречит физическому закону сохранения энергии. О чем он гласит? Суть этого принципа сводится к тому, что на протяжении бесконечного времени сумма энергии в системе остается неизменной. Но как это может сочетаться с нашей Вселенной, которая продолжает расширяться?

Инфляционная теория смогла ответить на этот вопрос. Крайне редко разгадываются подобные загадки Вселенной. Что было до Большого взрыва? Инфляционное поле. После возникновения мира на его место пришла привычная нам материя. Однако помимо нее во Вселенной также существует которое обладает отрицательной энергией. Свойства этих двух сущностей противоположны. Так компенсируется энергия, исходящая от частиц, звезд, планет и другой материи. Эта взаимосвязь также объясняет, почему Вселенная до сих пор не превратилась в черную дыру.

Когда Большой взрыв только произошел, мир был слишком мал, чтобы в нем что-то могло коллапсировать. Теперь же, когда Вселенная расширилась, на отдельных ее участках появились локальные черные дыры. Их гравитационное поле поглощает все окружающее. Из него не может выбраться даже свет. Собственно из-за этого подобные дыры становятся черными.

Расширение Вселенной

Даже несмотря на теоретическое обоснование инфляционной теории, до сих пор непонятно, как выглядела Вселенная до Большого взрыва. Человеческое воображение не может представить себе этой картины. Дело в том, что инфляционное поле является нематериальным. Оно не поддается объяснению привычными законами физики.

Когда произошел Большой взрыв, инфляционное поле начало расширяться в темпе, который превысил скорость света. Согласно физическим показателям, во Вселенной нет ничего материального, что могло бы двигаться быстрее этого показателя. Свет распространяется по существующему миру с запредельными цифрами. Инфляционное поле же распространилось с еще большей скоростью, как раз в силу своей нематериальной природы.

Современное состояние Вселенной

Текущий период эволюции Вселенной как нельзя лучше подходит для существования жизни. Ученые затрудняются определить, сколько будет продолжаться этот временной отрезок. Но если кто и брался за такие расчеты, то получавшиеся цифры были никак не меньше сотен миллиардов лет. Для одной человеческой жизни подобный отрезок настолько велик, что даже в математическом исчислении его приходится записывать с помощью использования степеней. Настоящее изучено гораздо лучше, чем предыстория Вселенной. Что было до Большого взрыва, в любом случае останется только предметом теоретических изысканий и смелых расчетов.

В материальном мире даже время остается величиной относительной. Например, квазары (вид астрономических объектов), существующие на расстоянии 14 миллиардов световых лет от Земли, отстают от нашего привычного «сейчас» на те самые 14 миллиардов световых лет. Этот временной разрыв колоссален. Его сложно определить даже математически, не говоря уже о том, что отчетливо представить себе подобное с помощью человеческого воображения (даже самого пылкого) просто невозможно.

Современная наука может теоретически объяснить себе всю жизнь нашего материального мира, начиная с первых долей секунд его существования, когда только что произошел Большой взрыв. Полная история Вселенной дополняется до сих пор. Астрономы открывают новые удивительные факты с помощью модернизированного и улучшенного исследовательского оборудования (телескопов, лабораторий и т. д.).

Однако существуют и так и не понятые явления. Таким белым пятном, например, является и ее темная энергия. Сущность этой скрытой массы продолжает будоражить сознание самых образованных и передовых физиков современности. Кроме того, так и не возникло единой точки зрения о причинах того, почему во Вселенной частиц все-таки больше, чем античастиц. По этому поводу было сформулировано несколько фундаментальных теорий. Некоторые из этих моделей пользуются наибольшей популярностью, но ни одна из них пока не принята международным научным сообществом в качестве

В масштабе всеобщего знания и колоссальных открытий XX столетий эти пробелы кажутся совсем незначительными. Но история науки с завидной регулярностью показывает, что объяснение таких «малых» фактов и явлений становится основой для всего представления человечества о дисциплине в целом (в данном случае речь идет об астрономии). Поэтому будущим поколениям ученых, безусловно, будет чем заняться и что открывать в области познания природы Вселенной.