Тектонический сдвиг: опасные последствия. Тектоника плит

Разлом, активизированный при Спитакском землетрясении 1988 года в Северной Армении: при землетрясении по разлому произошла подвижка, выразившаяся в образовании уступа поверхности высотой до 1,8 м

ЧТО ТАКОЕ ЖИВОЙ РАЗЛОМ

Со школьной скамьи мы знаем, что земная кора нарушена многочисленными разломами. До недавнего времени геологи полагали, что имеют дело с образованиями далекого геологического прошлого, и, как правило, даже не искали способа убедиться в их современной активности.

Вместе с тем уже давно специалисты обратили внимание на трещины и смещения земной поверхности при катастрофических землетрясениях. Чаще всего их считали приповерхностными нарушениями грунта от сейсмических сотрясений. Но еще в конце XIX века И.В. Мушкетов предположил, что такого рода разрывы являются выходами на поверхность разлома, подвижка по которому и была причиной землетрясения. Впоследствии его догадка подтвердилась, и потребность прогнозирования мест возможных будущих землетрясений заставила обратить на живые разломы особое внимание.

Термин «живой» или «активный» разлом появился в геологической литературе в конце 40-х годов XX века для обозначения разломов, проявляющих подвижность сейчас и способных проявлять ее в ближайшем будущем. Однако понятие «сейчас» в геологии, имеющей дело с событиями, нередко длящимися миллионы лет, неоднозначно. По одним разломам, например на границе Памира и Тянь-Шаня или в Калифорнии, движения земной коры происходят почти непрерывно, сопровождаясь частыми, но относительно слабыми землетрясениями, и фиксируются смещениями стен, заборов и дорожных покрытий на сантиметры в несколько лет. Другие разломы могут не обнаруживать признаков активности сотни и даже тысячи лет, а затем при сильном землетрясении дать импульс смещения амплитудой в метры. Таковы крупнейшие разломы Монголии и отдельные сегменты гигантского разлома Сан-Андреас в Калифорнии. Наконец, есть живые разломы, и их большинство, которые совмещают сильные сейсмические импульсы с медленными движениями в промежутках между ними. Таков, например, Северо-Анатолийский разлом Турции.

Следовательно, необходимо исследовать определенный временной интервал жизни разлома, чтобы установить его активность и определить ее параметры: интенсивность (среднюю скорость, рассчитываемую по амплитуде смещения в установленный промежуток времени), направление и режим движений. К. Аллен посчитал таким интервалом последние 10-12 тыс. лет, а А.А. Никонов расширил его до сотен тысяч лет. Дальнейшие исследования показали, что в подвижных поясах Земли для оценки параметров активности разлома достаточно изучить его жизнь в течение позднего плейстоцена и голоцена, то есть последних 100-150 тыс. лет, а в равнинных областях с вялыми движениями и редкими землетрясениями следует принимать во внимание и среднеплейстоценовую активность разлома, то есть его поведение в последние 700 тыс. лет.

КАК ИЗУЧАЮТ ЖИВЫЕ РАЗЛОМЫ

Рис. 1. Примеры живых разломов: а — аэрофотоснимок Таласо-Ферганского разлома в Центральном Тянь-Шане, Кыргызстан: горизонтальное смещение мелких водотоков на величину до 35 м; б — ветвь Левантской зоны разломов на западном берегу Мертвого моря в Израиле: при землетрясении 31 г. до н.э. по разлому прошла подвижка, сместившая на величину до 0,3 м ступени водного бассейна в Кумране Для обнаружения активности разлома используют комплекс геолого-геоморфологических, геофизических и геодезических методов. Наиболее широко применяют геолого-геоморфологические методы – выявление смещений и деформаций в зоне разлома молодых отложений и форм рельефа: русел, морских и речных террас (рис. 1). Особенно надежно определять движения вдоль разломов по смещениям современных и древних сооружений (зданий, ирригационных систем), поскольку в таких случаях более точно устанавливаются возраст и соответственно скорость подвижки. Так, вдоль Главного Копетдагского разлома на юге Туркменистана обнаружены горизонтальные смещения на несколько метров древних подземных оросительных галерей и даже стены средневековой крепости. Длительность выявленных подвижек оценивается по возрасту геологических образований и сооружений, смещенных разломом и перекрывающих смещение. Хорошие результаты дают радиоизотопные методы (радиоуглеродный по отношению 14С / 12С и уран-иониевый по отношению изотопов урана), а также исторические и археологические оценки. Широко применяют методы геологической и геоморфологической корреляции смещений с удаленными датированными объектами.

Рис. 1. г — Дарваз-Алтайская зона разломов на северо-западной окраине Памира в Таджикистане: горизонтальное смещение на 50 км краевых морен последнего оледенения на левобережье р. Муксу О современных подвижках по разлому можно судить по изменению относительного положения пунктов повторных геодезических измерений, расположенных в его крыльях. Многолетние исследования показали, что более устойчивы горизонтальные перемещения вдоль разлома (сдвиги) и поперек к нему (надвиг одного крыла на другое или их раздвигание), тогда как вертикальная компонента перемещений подвержена частым вариациям, иногда намного превосходящим многовековой тренд. Поэтому наилучшие результаты дают космогеодезические наблюдения с помощью спутников, приемников и средств обработки данных так называемой GPS-системы, у которой точность измерений горизонтальных перемещений достигает первых миллиметров. Сущность системы в том, что спутник с точно определяемыми параметрами орбиты посылает сигналы, прием которых позволяет измерить координаты наземных пунктов наблюдений. Сравнение результатов измерений разных лет показывает относительное перемещение пунктов, то есть деформацию в зоне разлома, которая может сразу сниматься движением по нему, а может накапливаться и по прошествии многих лет реализоваться сильным землетрясением.

Косвенными признаками активности разломов являются расположенные вдоль них цепочки эпицентров землетрясений, вулканов, термальных источников. О поведении разлома на глубине удается судить по результатам сейсмопрофилирования, показывающего смещения поверхностей глубинных слоев, отражающих и преломляющих сейсмические волны. На характер подвижек по разлому могут указывать особенности происходивших вдоль него землетрясений. Совместное применение перечисленных методов выявляет сложную картину жизни разлома с изменениями его параметров вдоль разлома и на глубину, а также с временными вариациями их проявлений.

ТЕКТОНИЧЕСКАЯ ПОЗИЦИЯ И ГЕОДИНАМИЧЕСКОЕ ЗНАЧЕНИЕ ЖИВЫХ РАЗЛОМОВ

Большое значение, которое имеют живые разломы прежде всего для оценки сейсмической опасности, побудило Международную комиссию по литосфере инициировать в 1989 году проект «Карта крупных активных разломов мира». Этот проект, послуживший вкладом Международной программы «Литосфера» в объявленное ООН десятилетие уменьшения опасности природных бедствий, возглавлял автор настоящей статьи, проект объединил усилия 70 ученых из 50 стран. Сейчас он близок к завершению. Созданы компьютерные базы данных и карты крупнейших активных разломов континентов, а в наиболее подвижных и жизненно важных регионах выполнены и более детальные исследования. Их результаты использованы при составлении карт сейсмической опасности различных регионов.

Проведенные в рамках этого проекта исследования выявили общие закономерности активного разломообразования. Живые разломы распределены на поверхности Земли неравномерно. Большая их часть находится в подвижных поясах, отличающихся контрастностью рельефа и высокой сейсмичностью. Эти пояса разграничивают крупные литосферные плиты, охватывающие земную кору и самую верхнюю часть мантии. В зависимости от направлений относительного перемещения плит в таких поясах могут происходить их раздвигание (рифтовые системы на срединно-океанических хребтах), их сближение (островные дуги, активные континентальные окраины и области коллизии, то есть столкновения континентальных частей плит) или сдвиг вдоль их границ (например, между Анатолийской и Евразийской плитами по Северо-Анатолийской зоне разломов). На территории Евразии и Африки расположены два крупнейших подвижных мегапояса: Притихоокеанский и Альпийско-Гималайский. Первый приурочен к границе Евразийской плиты с Тихоокеанской и на севере с Северо-Американской плитами, а второй охватывает область сближения Евразийской плиты с плитами южного ряда: Австралийской, Индийской, Аравийской и Африканской.

Рис. 2. Карта активных разломов Евразии и Африки

Подвижки по активным разломам подвижных поясов отражают направления современного относительного перемещения плит. Вместе с тем они охватывают не только границы плит, но и обширные смежные области шириной в сотни, а в Центральной Азии более 1000 км (рис. 2), разделяя микроплиты и блоки земной коры, расположенные между главными плитами. Их рисунок напоминает картину ледохода на реке, когда между крупными льдинами возникает крошево более мелких кусков льда. Перемещения между блоками иногда лишь немногим уступают перемещениям на границах главных плит, хотя в целом убывают с удалением от них. Так, средние скорости сдвига на западном и северо-восточном флангах Аравийской плиты достигают 7-10 мм/год, а по расположенным севернее крупнейшим межблоковым разломам Малого и Большого Кавказа близки к 5 мм/год. На флангах Индийской плиты скорости современных движений составляют 10-30 мм/год, а по крупнейшим разломам более северных и восточных областей Альпийско-Гималайского пояса – в Южном Тибете, на его северной и восточной границах, в Тянь-Шане и Монголии – они местами достигают и иногда превосходят 10 мм/год. Таким образом, распределение смещений внутри пояса оказывается сложным и неравномерным. Давление, первоначально возникшее на границе сближающихся главных плит, вызвало последовательное дробление все более удаленных от нее участков, и сейчас все они вовлечены в относительное перемещение. При этом большинство крупных активных разломов Евразии имеют сдвиговую компоненту движений, которая равна или чаще больше вертикальной компоненты. Сдвигами являются почти все разломы со скоростями движений более 10 мм/год. Обусловлено это тем, что горизонтальный сдвиг – наиболее энергетически экономная форма перемещения континентальных масс, поскольку не требует преодоления силы тяжести.

Сложность современного развития подвижных поясов и относительного перемещения плит не исчерпывается подвижками по разломам. Так, вдоль Северо-Анатолийской зоны разломов между Евразийской и Анатолийской плитами скорость современного сдвига составляет, по геологическим и космогеодезическим данным, 13-20 мм/год, но, по тем же космогеодезическим данным, общая величина относительного перемещения этих плит достигает 30 мм/год, прирастая за счет деформации приразломной полосы шириной более 100 км. Иначе говоря, плиты (по крайней мере, в тех их частях, где перемещения особенно велики и контрастны) ведут себя не как бетонные монолиты, а как куски вара, способные медленно течь в результате давления друг на друга. Такое крупномасштабное течение особенно ярко выражено на Тибете, который под давлением Индийской плиты, движущейся к северо-востоку, укорачивается в поперечном направлении, вздымается и одновременно выдавливается на восток и юго-восток.

Совместный анализ геологических и геофизических данных о поведении активных разломов на глубине и современных деформациях глубинных горизонтов литосферы показал, что в разрезе литосферы подвижных поясов наблюдается тектоническая расслоенность – столь же сложное зонально-ячеистое распределение деформаций и смещений, как и на поверхности Земли. Разные горизонты литосферы могут деформироваться в разной степени, смещаться по зонам нарушений разных направлений и даже местами двигаться с разными скоростями. Литосферная плита в подвижном поясе более напоминает деформированный с боков торт «наполеон», чем монолитную пластину. В слабо подвижных равнинных областях потенциальные возможности тектонического расслоения сохраняются, но реализуются в существенно меньшей степени.

АКТИВНЫЕ РАЗЛОМЫ И ЖИЗНЬ ЛЮДЕЙ

Треть человечества живет в сейсмически активных областях, где время от времени случаются разрушительные и изредка катастрофические землетрясения и где сосредоточено большинство крупных живых разломов. Для обеспечения безопасности населения, планирования землепользования, подходящих мест для возведения тех или иных сооружений и средств их защиты важное, а возможно, и решающее значение имеет не столько предупреждение отдельного сейсмического события в конкретном месте и в конкретное время, сколько определение уровня сейсмических воздействий от возможных будущих сильных землетрясений. Чтобы рассчитать этот уровень, надо знать места, максимальную возможную энергию (магнитуду Mmax) и повторяемость будущих землетрясений. Места и максимальная магнитуда определяют комплексным анализом параметров уже случившихся в регионе землетрясений и активных разломов. Связь этих явлений очевидна, поскольку подавляющее большинство землетрясений земной коры приурочено к зонам живых разломов.

Изучение живых разломов дает возможность, во-первых, уточнить сейсмические характеристики региона, по которым определяются места, Mmax и повторяемость будущих землетрясений максимальной магнитуды, и, во-вторых, получить эти характеристики независимым путем. Важность активных разломов как источника сейсмологической информации обусловлена тем, что для оценки Mmax нужно знать сейсмическую историю региона за максимально длительный срок, в течение которого случались землетрясения больших магнитуд и проявилась их повторяемость. Но инструментальная регистрация землетрясений проводится немногим более 100 лет, а исторические сведения о более ранних сейсмических событиях прерывисты и во многих местах отсутствуют. Изучение живых разломов восполняет этот пробел.

На рис. 3 представлен разрез канавы, прорытой поперек зоны активного Казерунского разлома в горах Загроса (Иран). Видно, что зона имеет сложное строение. Отдельные разрывы нарушают некие слои речных наносов, но перекрыты другими слоями, то есть возникли после первых и до вторых. По крупнейшему разрыву более молодые слои смещены по вертикали на меньшее расстояние и менее деформированы, чем более древние. Следовательно, было несколько импульсов движений – сильных землетрясений. По соотношению отдельных разрывов со смещенными и перекрывающими слоями, возраст которых, как удалось установить, охватывает последние 12 тыс. лет, выявлено шесть таких землетрясений, то есть они повторялись в среднем через 2000 лет.

Независимый способ оценки мест и Mmax землетрясений по данным об активных разломах основан, во-первых, на самом факте приуроченности большинства сильных землетрясений к таким разломам и, во-вторых, на их длине и амплитудах выявленных сейсмогенных подвижек. Хотя очаги современных сильных землетрясений могут располагаться в любой части зоны живого разлома, выявлены места, где они возникают особенно часто. Это пересечения и сочленения разнонаправленных разломов и участки, где кулисно расположенные сегменты разломов надстраивают друг друга. Именно там непрерывное движение по разлому затормаживается и происходит накопление упругой деформации, приводящее к сейсмогенерирующему срыву.

Использование для оценки Mmax данных о длине разлома L и величине сейсмогенных подвижек D основано на уравнениях регрессии типа M = a + b lg L и M = c + + d lg D, где a, b, c и d – коэффициенты, эмпирически определенные по данным о подвижках при современных землетрясениях, а M – их амплитуды. При разделении разлома на отдельные сегменты, развивающиеся сейсмически независимо, L – не общая длина разлома, а длина сегмента. Изучение палеоземлетрясений показывает, что границы сегментов устойчивы во времени. Следует иметь в виду разную сейсмическую активность живых разломов подвижных поясов и равнинных областей, а также направления движений по разломам и возможный вклад медленных движений в общее смещение, вводя на это поправку в соотношения L, D и Mmax . Внеся такие поправки в величины смещений, установленные в канаве (см. рис. 3), мы определили магнитуды вызвавших их палеоземлетрясений величинами 7-7,3, то есть оценили эти землетрясения как катастрофические.

Влияние активных разломов на жизнь людей не исчерпывается сейсмическими воздействиями, причем это влияние может быть не только отрицательным, но и положительным. На рис. 4 представлена карта активных разломов Ближнего Востока, на которую нанесены пункты, где археологи обнаружили следы зарождения древнейшего земледелия – важнейшего шага в истории человечества, называемого неолитической революцией и ознаменовавшего переход к производящей экономике. Древнейшее земледелие возникло в так называемом плодородном полумесяце, протягивающемся дугой от Израиля через Ливан, Сирию, Южную Турцию к пограничной полосе между Ираком и Ираном.

Рис. 4. Живые разломы и места находок следов древнейшего земледелия на Ближнем Востоке. Типы разломов те же, что на рис. 2. Синие точки — места находок следов древнейшего земледелияВсякий минимально знакомый с земледелием знает, что для него нужны: 1) простейшая инфраструктура (постоянное жилище, коммуникации); 2) средства для возделывания земли и хранения урожая; 3) благоприятные климатические условия; 4) хорошая почва на подходящих землях; 5) полив; 6) посевной материал. Первые два условия были подготовлены социально-техническим развитием населения региона на стадии собирательства диких растений. Улучшение климатических условий было связано с окончанием ледниковой эпохи. А три последних условия обеспечили… живые разломы. И это видно уже из того, что почти все пункты со следами древнейшего земледелия находятся в зонах живых разломов и связанных с ними структур (см. рис. 4). Именно их активностью в течение последних 1-3 млн лет обусловлено сочетание горных хребтов с долинами и предгорными равнинами, покрытыми речными наносами, где и сейчас почвы наиболее благоприятны для земледелия. Хребты задерживали средиземноморские влажные тучи, обеспечивая выпадение дождей. С них в долины и на равнины сбегали мелкие речки, орошая почву. Вдоль живых разломов тогда, как и сейчас, выходили родники пресной воды, обеспечивая потенциальных земледельцев водой в засушливые сезоны и годы. И это не все: раздробленные породы в зонах разломов создавали пониженные прямые участки местности, которые использовались реками или представляли удобные места для прокладки троп и караванных путей, то есть становились трассами древнейших коммуникаций. Так было в прошлом на Ближнем Востоке, и так же, кстати, было в Древней Руси. Вероятно, именно с этим проявлением живых разломов связано то, что к них и особенно к их пересечениям приурочено большинство городов Русской равнины, возникших до 1300 года и достигших сейчас численности населения не менее 100 тыс.

Однако вернемся к последней предпосылке древнейшего земледелия – наличию посевного материала. Великий русский ботаник и генетик академик Н.И. Вавилов установил, что ближневосточный центр зарождения земледелия попадает в юго-западно-азиатский ареал распространения диких предков культурных растений, в котором произрастали пшеница-однозернянка, эммер, ячмень, горох, чечевица в сочетании с миндалем и фисташкой как потенциальными источниками масла. Вместе с тем Н.И. Вавилов отметил в этом ареале участки, где указанные растения встречались совместно, давая большое количество разновидностей, что позволяло первым земледельцам выбрать формы наиболее продуктивные и пригодные для воспроизведения. Такие участки, как оказалось, приходятся на зоны активных разломов. В чем дело?

Н.Н. Воронцов и Е.А. Ляпунова обнаружили в высоко сейсмически активной зоне разломов на границе Памира и Тянь-Шаня у Ellobius talpinus, одного из надвидов слепушей (мелкие грызуны), характерные изменения набора хромосом – так называемые робертсоновские транслокации. Подобные мутагенные изменения были выявлены у слепушей в зонах живых разломов Болгарии, Югославии, Сирии, Ливана и Израиля, а у других мелких грызунов, в частности полевок и домовой мыши, – также в активных зонах Апеннин, Альп, Пиренеев, Динарид, Малого Кавказа, Тянь-Шаня, Алтая, Байкала, Курил, Японии и запада США. Можно полагать (и сейчас появились тому доказательства), что подобные мутагенные воздействия оказывали активные разломы и на диких предков культурных растений, обусловив их разнообразие, использованное первыми земледельцами.

Причиной мутагенных изменений могли быть химически своеобразные эмонации активных зон. В ходе аэро-космо-геологического эксперимента «Тянь-Шань-Интеркосмос-88» нам удалось установить выделение в зонах живых разломов радона и некоторых тяжелых металлов (рис. 5). Особенно показательным было изучение однотипных полей люцерны в зоне Файзабадского разлома на южном фланге Тянь-Шаня и вне ее. В зоне разлома люцерна оказалась обогащенной в три раза и более железом, марганцем, мышьяком, цирконом, ниобием и другими тяжелыми металлами.

Итак, наша планета до сих пор сохраняет тектоническую активность, наиболее наглядно проявляющуюся в динамике живых разломов. Их большая часть и почти все разломы со скоростями движений $?1 мм/год сосредоточены в подвижных поясах. Однако и равнинные территории типа Восточно-Европейской и Сибирской платформ также нарушены живыми разломами, заметное дыхание которых дополняется лишь ничтожными направленными движениями. Исключение среди «вялых» регионов составляют Фенноскандия и другие подобные области, 10-12 тыс. лет назад покрывшиеся мощным ледником. Здесь снятие ледовой нагрузки привело к общему воздыманию и некоторому ускорению подвижек по разломам.

Живые разломы оказывали и продолжают оказывать влияние на жизнь и деятельность людей. Это влияние бывало и отрицательным и положительным. Живые разломы были и остаются источником природных бедствий, иногда катастрофических. Таковы прежде всего сильные землетрясения, а также извержения связанных с разломами вулканов, аварии скважин и трубопроводов, выделение радиоактивных элементов и соединений тяжелых металлов, некоторые вредные для здоровья геофизические аномалии, в частности электромагнитные. С вертикальными смещениями по разломам связаны изменения береговых линий, нарушающие эксплуатацию портовых и других прибрежных сооружений, усиление эрозии воздымающихся территорий, концентрация оползней и обвалов вдоль разломных уступов. Особенно опасны, хотя порой и незаметны при жизни одного поколения, многолетние эпохи усиления активности, проявляющиеся более частыми сильными землетрясениями. Крупнейшие социально-политические кризисы в истории Средиземноморья и Ближнего Востока (XIII-XI вв. до н.э., IV-VII вв. н.э. и вторая половина XVI-XIX столетие) совпадают с эпохами ухудшения климата и частых сильных землетрясений.

Вместе с тем активность разломов определяла создание ландшафтов, благоприятствовавших становлению и развитию земледелия. Зоны разломов были источниками водоснабжения и естественными трассами речных и сухопутных коммуникаций. Двойственно воздействие разломов на живые организмы. С одной стороны, их мутагенный эффект обеспечил разнообразие диких предков культурных растений, позволившее древним земледельцам выбрать формы, наиболее продуктивные и пригодные для воспроизводства. С другой стороны, даже более слабые воздействия живых разломов равнинных территорий могут оказывать патогенное влияние на человека и биоту. Так, в зонах молодых разломов района Санкт-Петербурга работами Е.К. Мельникова, В.А. Рудника и Ю.И. Мусийчука выявлены повышенные выделения радона, увеличение числа раковых заболеваний и болезненные изменения деревьев, причем разломы влияют больше, чем промышленное загрязнение.

Мы не можем изменить активность живых разломов и связанных с ней землетрясений и других опасных явлений, но можем и обязаны уменьшить их отрицательные воздействия путем разумного планирования строительства и землепользования и обеспечения защитных мероприятий. Следует использовать и положительные эффекты активного разломообразования как источников подземных вод, в частности минеральных, а также мест организации заповедников и национальных парков.

Владимир Георгиевич Трифонов, доктор геолого-минералогических наук, профессор, лауреат Государственной премии, действительный член РАЕН, руководит Лабораторией неотектоники и современной геодинамики в Геологическом институте РАН, возглавляет проект «Карта крупных активных разломов мира» Международной программы «Литосфера». Область научных интересов – общая геотектоника, неотектоника, современная геодинамика, сейсмотектоника, геоэкология, влияние геодинамических процессов на историю. Автор 220 научных работ, в том числе 14 монографий.

Находясь в непрерывном движении, они принимают непосредственное участие в формировании облика нашей планеты. Тектонические плиты находятся в непрерывной динамике друг относительно друга, и даже небольшие отклонения от нормы в их активности отзываются серьезными катастрофами: землетрясениями, цунами, извержениями вулканов и затоплением островов. Изучением опаснейших разломов земной коры исследователи занялись совсем недавно, до настоящего времени они не могут точно определить, в каком месте планеты случится очередной пик тектонической активности. За самыми крупными рифтами осуществляется постоянное наблюдение, а о существовании некоторых опасных тектонических разломов современные ученые ничего не знают.

Самым большим и известным в мире разломом является Сан-Андреас, значительная его часть проходит по суше. Основная его часть находится на территории Калифорнии, а часть проходит вдоль побережья. Длина трансформного разлома составляет порядка 1 300 метров, сформировался рифт в результате разрушения литосферной плиты Фараллон. Гигантский разлом является причиной серьезных землетрясений, магнитуда которых достигает 8,1.


Сильное землетрясение произошло в Сан-Франциско в 1906 году, а последнее крупное землетрясение Лома-Приета случилось в 1989 году. Максимальное смещение грунта, которое было зафиксировано в районе разлома во время землетрясений, составило 7 метров. За последние сто лет от многочисленных землетрясений сильно пострадал городок Санта-Круз, который находится в ближайших окрестностях Сан-Франциско. Только в 1989 году в нем было разрушено более 18 000 домов, от стихии погибло 62 человека.


Разлом Сан-Андреас считается самым опасным в мире, именно он, по мнению исследователей, может привести к глобальной катастрофе, за которой последует гибель цивилизации. Несмотря на разрушительную мощь землетрясений, именно они помогают разлому освобождать накопленное давление и предотвращать глобальную катастрофу. Точно предсказать время следующего землетрясения невозможно, лишь недавно специалисты начали отслеживать колебание плит, формирующих разъем, с помощью GPS-измерений. В настоящее время самым сейсмоопасным считается участок разлома вблизи Лос-Анджелеса. Здесь землетрясений не было уже очень давно, это значит, что новое землетрясение обещает быть невероятно мощным.


Не так давно исследователям удалось установить, что Тихоокеанское огненное кольцо тоже представляет собой ничто иное, как огромный тектонический разлом. Эта уникальная область, расположенная по периметру Тихого океана, является средоточием 328 действующих вулканов из 540 известных на земле. Вулканическая цепь охватывает территорию многих стран, одним из сеемых сейсмоопасных районов считается Индонезия.

Дно самого большого на планете озера Байкал тоже представляет собой тектонический разлом. Берега озера находятся в постоянном движении и постепенно расходятся, многие ученые утверждают, что такие преобразования являются ярким примером зарождения нового океана. Однако, на то, чтобы озеро расширилось до масштабов океана, необходимо несколько сотен миллионов лет. Вулканическая активность в районе Байкала очень высока, каждый день здесь регистрируется не менее пяти подземных толчков. Случаются здесь и крупные землетрясения, самым известным считается Цанагское землетрясение, которое случилось в январе 1862 года.

В последние годы внимание исследователей привлекают вулканы Исландии, мощность и опасность которых долгое время была недооцененной. На территории Исландии можно увидеть несколько гигантских разрывов земной коры, сформированы которые движением Евразийской и Северо-Американской тектонических плит. Плиты ежегодно расходятся примерно на 7 мм, изначально этот показатель кажется совсем незначительным. Такими темпами за последние 10 000 лет разлом расширился на 70 метров, если эти показатели сопоставить с возрастом нашей планеты, то тектонические изменения кажутся более чем внушительными.

В России в Сочинском национальном парке находится удивительный каньон Псахо, который по некоторым данным тоже является ничем иным, как тектоническим разломом. Масштабный каньон разделяют на две ветви – сухую и мокрую. По дну мокрого каньона протекает река, а сухой каньон не отличается наличием ручьев и рек. Протяженность сухого каньона составляет порядка 200 метров, он сформировался более 70 миллионов лет назад во время сильного землетрясения.

Уникальным геологическим объектом является Большой Африканский разлом, его не случайно считают одним их самых загадочных мест на планете. Разлом настолько большой и настолько активно разрастается, что многие ученые уверены в скором отсоединении нынешней восточной части Африки от материка. В результате разрастания тектонического разлома на планете может появиться еще один большой остров.

Из-за появления загадочного разлома на весь мир стал известен расположенный в Колумбии город Грамалот. В декабре 2010 года этот город в буквальном смысле начал двигаться, на его территории появилось несколько крупных трещин в земной коре, были разрушены сотни домов и дорог. Изначально местные СМИ объясняли это подвижкой грунта из-за сильных дождей, однако, научно подтвердить эту версию не удалось. Что именно стало причиной разрушения крупного города, и сейчас не известно. В штате Мичиган в районе Birch Creek не так давно тоже появился загадочный разлом, длина которого составляет 180 метров, а глубина – 1,2 метра соответственно. Сформировался разлом в равнинной местности, на протяжении многих лет в этих местах рос лес. Глядя на эти места сейчас, можно увидеть удивительную картину. Создается впечатление, что земля под трещиной внезапно поднялась, из-за чего расположенные справа и слева от нее деревья теперь наклонены в разные стороны примерно на 30 градусов.

Еще один крупный разлом земной коры сформировался несколько лет назад в Пакистане, в районе Сиги. Численность населения в данной области очень низкая, поэтому никаких массовых объявлений в СМИ после обнаружения этой геологической аномалии не последовало. О наличии разлома, протяженность которого составляет несколько сотен метров, мировой общественности стало известно совершенно случайно, после появления видео на одном из крупных международных сайтов.

Здравствуйте дорогой читатель. Никогда ранее я не думал, что мне придётся писать эти строки. Довольно долго не решался записать всё то, что мне суждено было открыть, если это вообще так можно назвать. До сих пор порой задумываюсь, а не сошел ли я с ума.

Как то вечером ко мне подошла дочь с просьбой показать на карте где и какой океан находится на нашей планете, а так как печатной физической карты мира у меня дома нет, то я открыл на компьютере электронную карту Google, переключил её в режим вида со спутника и начал ей потихоньку всё объяснять. Когда от Тихого океана дошел до Атлантического и приблизил поближе, чтобы показать дочери получше, то меня словно током ударило и я вдруг увидел то что видит любой человек на нашей планете, но совершенно другими глазами. Как и все я до этого момента не понимал что такое же вижу на карте, а тут у меня словно глаза открылись. Но всё это эмоции, а из эмоций щи не сваришь. Так что давайте попробуем вместе увидеть что же такое мне открылось карте Google, а открылось ни много ни мало - след столкновения нашей Земли Матушки с неведомым небесным телом, приведшего к тому, что принято называть Великим Потом.


Посмотрите внимательно в левый нижний угол фотографии и задумайтесь: вам это ничего не напоминает?Не знаю как вам, а мне это напоминает четкий след от удара некого округлого небесного тела о поверхность нашей планеты. Причём удар был перед материком Южная Америка и Антарктида, которые от удара теперь слегка вогнуты в сторону направления удара и разделяются в этом месте проливом, носящим имя пролив Дрейка, пирата, который якобы и открыл этот пролив в прошлом.

На самом же деле этот пролив представляет собой рытвину, оставленную в момент удара и заканчивающуюся округлым «пятном контакта» небесного тела с поверхностью нашей планеты. Давайте посмотрим на это «пятно контакта» поближе и повнимательнее.

Приблизив, мы видим округлое пятно, имеющее вогнутую поверхность и заканчивающееся справа, то есть со стороны по направлению удара, характерным холмом с практически отвесной гранью, имеющей опять же характерные возвышения, которые выходят на поверхность мирового океана в виде островов. Для того чтобы лучше понять характер образования этого «пятна контакта» вы можете проделать такой же опыт, какой проделал я. Для опыта необходима мокрая песчаная поверхность. Прекрасно подойдёт поверхность песка на берегу реки или моря. Во время опыта необходимо произвести плавное движение рукой, во время которого вы ведете рукой над песком, затем касаетесь пальцем песка и, не прекращая движение руки, оказываете на него давление, тем самым сгребая некоторое количество песка пальцем и затем через некоторое время производите отрыв своего пальца от поверхности песка. Проделали? А теперь посмотрите на результат данного несложного опыта и вы увидите картину, полностью аналогичную той, что представлена на фото ниже.

Есть ещё один забавный нюанс. По заявлениям исследователей, северный полюс нашей планеты в прошлом сместился примерно на две тысячи километров. Если же измерить протяженность так называемой рытвины на дне океана в проливе Дрейка и заканчивающейся «пятном контакта», то она так же примерно соответствует двум тысячам километров. На фото я сделал замер средствами программы Google Maps. Причем исследователи не могут ответить на вопрос что послужило причиной сдвига полюса. Я не берусь утверждать с вероятностью в 100 %, но всё же стоит задуматься над вопросом: а не эта ли катастрофа послужила причиной смещения полюсов планеты Земля на эти самые две тысячи километров?

Теперь давайте зададимся вопросом: что же произошло, после того как небесное тело ударило по касательной в планету и вновь ушло в просторы космоса? Вы спросите: почему по касательной и почему обязательно ушло, а не пробило поверхность и погрузилось в недра планеты? Тут всё тоже очень просто объясняется. Не стоит забывать о направлении вращения нашей планеты. Именно то стечение обстоятельств, что небесное тело дарило по ходу вращения нашей планеты спасло её от разрушения и позволило небесному телу так сказать соскользнуть и уйти прочь, а не зарыться в недра планеты. Не меньшая удача была в том, что удар пришелся в океан перед материком, а не в сам материк, так как воды океана несколько сдемпфировали удар и сыграли роль своеобразной смазки при соприкосновении небесных тел, но этот факт имел и обратную сторону медали - воды океана сыграли и свою разрушительную роль уже после отрыва тела и ухода его в космос.

Теперь давайте посмотрим что же произошло далее. Думаю, никому не надо доказывать, что следствием удара, приведшего к образованию пролива Дрейка, послужило образование огромной многокилометровой волны, которая на огромной скорости понеслась вперёд, сметая всё на своём пути. Давайте проследим путь этой волны.

Волна пересекла Атлантический океан и первой преградой на её пути встала южная оконечность Африки, правда она пострадала относительно немного, та как волна задела её своим краем и слегка повернула к югу, где налетела на Австралию. А вот Австралии повезло гораздо меньше. Она приняла на себя удар волны и была практически смыта, что очень хорошо видно на карте.

Далее волна пересекла Тихий океан и прошла между Америками, опять же своим краем зацепив Северную Америку. Последствия этого мы видим и на карте и в фильмах Склярова, который весьма живописно расписал последствия Великого Потопа в Северной Америке. Если кто не смотрел или уже подзабыл, то может пересмотреть эти фильмы, благо они давно уже выложены в свободный доступ в сети Интернет. Это весьма познавательные фильмы, правда далеко не всё в них стоит воспринимать всерьёз.

Далее волна второй раз пересекла Атлантический океан и всей своей массой на полном ходу ударила в северную оконечность Африки, сметая и смывая всё на своём пути. Это так же прекрасно видно на карте. С моей точки зрения таким странным расположением пустынь на поверхности нашей планеты мы обязаны вовсе не причудам климата и не безрассудной деятельности человека, а именно разрушительному и безпощадному воздействию волны во время Великого потопа, которая не только сметала всё на своём пути, но и в буквальном смысле этого слова всё смывала, включая не только постройки и растительность, но и плодородный слой почвы на поверхности материков нашей планеты.

После Африки волна прокатилась по Азии и вновь пересекла Тихий океан и, пройдя в разрез между нашим материком и Северной Америкой ушла на северный полюс через Гренландию. Достигнув северного полюса нашей планеты волна сама себя погасила, т. к. она исчерпала и свою мощь, последовательно тормозясь о материки, на которые она налетала и тем что на северном полюсе в конце концов догнала сама себя.

После этого пошел откат воды уже потухшей волны со стороны Северного полюса на юг. Часть воды прошла через наш материк. Именно этим можно объяснить объяснить до сих пор затопленную северную оконечность нашего материка и забросанный землёй Финский залив и города западной Европы, в том числе наш Петроград и Москву, погребённые под многометровым слоем земли, которую принесли, отхлынувшего с Северного полюса.

Карта тектонических плит и разломов Земной коры

Если был удар небесного тела, то вполне разумно поискать его последствия в толще Земной коры. Ведь удар такой силы просто не мог не оставить никаких следов. Давайте обратимся к карте тектонических плит и разломов Земной коры.

Что же мы там видим на этой карте? На карте четко виден тектонический разлом на месте не только следа, оставленного небесным телом, но и вокруг так называемого «пятна контакта» на месте отрыва небесного тела от поверхности Земли. И эти разломы лишний раз подтверждают правильность моих выводов об ударе некого небесного тела. И удар был такой силы, что не только снёс перешеек между Южной Америкой и Антарктидой, но и привёл к образованию тектонического разлома в Земной коре в данном месте.

Странности траектории движения волны по поверхности планеты

Думаю стоит поговорить ещё об одном аспекте движения волны, а именно о её непрямолинейности и неожиданных отклонениях то в одну, то в другую сторону. Нас всех с детства приучили считать, что мы проживаем на планете, которая имеет форму шара, который слегка сплюснут с полюсов.

Я довольно долго и сам придерживался такого же мнения. И каково же было моё удивление, когда в 2012 году мне попались результаты исследования Европейского космического агентства ESA с использованием данных, полученных аппаратом GOCE (Gravity field and steady-state Ocean Circulation Explorer — спутник для исследования гравитационного поля и постоянных океанических течений).

Ниже я привожу несколько фотографий настоящей формы нашей планеты. Причём стоит учесть тот факт, что это форма самой планеты без учета находящихся на её поверхности вод, образующих мировой океан. Вы можете задать вполне законный вопрос: какое отношение эти фотографии имеют к обсуждаемой здесь теме? С моей точки зрения самое что ни на есть прямое. Ведь мало того, что волна движется по поверхности небесного тела, имеющего неправильную форму, но на её движение оказывает удары фронта волны.

Какими бы ни были циклопическими размеры волны, но сбрасывать со счетов эти факторы нельзя, ведь то что мы считаем прямой линией на поверхности глобуса, имеющего форму правильного шара, на деле оказывается далёкой от прямолинейной траектории и наоборот - то что в реальности является прямолинейной траекторией на поверхности неправильной формы на глобусе превратится в замысловатую кривую.

И это мы ещё не рассматривали тот факт, что при движении по поверхности планеты, волна многократно встречала на своём пути различные препятствия в виде материков. И если вернуться к предполагаемой траектории движения волны по поверхности нашей планеты, то можно заметить, что и Африку в первый раз и Австралию она задевала своей периферийной частью, а не всем фронтом. Это не могло не влиять не только на саму траекторию движения, но и на рост фронта волны, который каждый раз при встрече с препятствием частично обрывался и волне приходилось начинать расти заново. А если рассмотреть момент её прохождения между двумя Америками, то нельзя не заметить тот факт, что при этом фронт волны не только в очередной раз был усечен, но и часть волны за счет переотражения повернула на юг и смыла побережье Южной Америки.

Примерное время катастрофы

Теперь попробуем выяснить когда же произошла эта катастрофа. Для этого можно было бы снарядить экспедицию на место катастрофы, детально его обследовать, взять всевозможные пробы грунта, пород и пытаться их исследовать в лабораториях, затем проследовать по маршруту движения Великого потопа и вновь проделать ту же работу. Но всё это стоило бы громадных денег, растянулось бы на долгие, долгие годы и совсем не обязательно, что на проведение данных работ хватило бы всей моей жизни.

Но так ли всё это необходимо и нельзя ли обойтись хотя бы пока, на первых порах без столь дорогостоящих и ресурсоёмких мероприятий? Я считаю, что на данном этапе для установления примерного времени катастрофы мы с вами вполне сможем обойтись информацией, добытой ранее и находящейся сейчас в открытых источниках, как мы уже сделали при рассмотрении планетарной катастрофы, приведшей к Великому потопу.

Для этого нам следует обратимся к физическим картам мира различных веков и установить когда же на них появился пролив Дрейка. Ведь ранее мы установили, что именно пролив Дрейка образовался в результате и на месте данной планетарной катастрофы.

Ниже представлены физические карты, которые я смог найти в открытом доступе и подлинность которых не вызывает особого недоверия.

Вот карта Мира, датируемая 1570 годом от Рождества Христова

Как мы видим, на этой карте пролива Дрейка нет и Южная Америка всё ещё соединяется с Антарктидой. А это значит, что в шестнадцатом веке катастрофы ещё не было.

Давайте возьмём карту начала семнадцатого века и проверим не появились ли пролив Дрейка и своеобразные очертания Южной Америки и Антарктиды на карте в семнадцатом веке. Ведь не могли же мореплаватели не заметить такого изменения в ландшафте планеты.

Вот карта, датируемая началом семнадцатого века. К сожалению более точной датировки, как в случае с первой картой, у меня нет. На ресурсе, где я нашел эту карту, стояла именно такая датировка «начало семнадцатого века». Но в данном случае это не носит принципиального характера.

Дело в том, что и на этой карте и Южная Америка и Антарктида и перемычка между ними находятся на своём месте, а следовательно либо катастрофа ещё не случилась, либо картограф не знал о произошедшем, правда в это верится с трудом, зная масштаб катастрофы и все те последствия, к которым она привела.

Вот очередная карта. На этот раз датировка карты более точная. Она датируется так же семнадцатым веком - это 1630 год от Рождества Христова.

И что же мы видим на этой карте? Хоть очертания материков прорисованы на ней и не столь хорошо, как в предыдущей, но отчетливо видно, что пролива в современном его виде на карте нет.

Ну что ж, видимо и в данном случае повторяется картина, описанная при рассмотрении предыдущей карты. Продолжаем движение по временной шкале в сторону наших дней и в очередной раз берём карту более свежую, чем предыдущая.

На этот раз физической карты мира я не нашел. Нашел карту Северной и Южной Америк, кроме того на ней не отображена Антарктида вообще. Но это ведь не столь важно. Ведь очертания южной оконечности Южной Америки мы помним по предыдущим картам и любые в них изменения то мы сможем заметить и без Антарктиды. Зато с датировкой карты в этот раз полный порядок - она датирована самым концом семнадцатого века, а именно 1686 годом от Рождества Христова.

Давайте посмотрим на Южную Америку и сверим её очертания с тем, что видели на предыдущей карте.

На этой карте мы видим наконец-то не набившие уже оскомину допотопные очертания Южной Америки и перешеек, соединяющий Южную Америку с Антарктидой на месте современного и привычного пролива Дрейка, а самую что ни на есть привычную современную Южную Америку с изогнутой в сторону «пятна контакта» южной оконечностью.

Какие выводы можно сделать из всего изложенного выше? Есть два довольно простых и очевидных вывода:



    1. Если допустить, что картографы действительно составляли карты в те времена, которыми датированы карты, то катастрофа произошла в пятидесятилетний промежуток между 1630 и 1686 годами.





    1. Если допустить, что картографы для составления своих карт использовали древние карты и лишь копировали их и выдавали за свои, то можно утверждать лишь то, что катастрофа произошла ранее 1570 года от рождества Христова, а в семнадцатом веке при повторном заселении Земли были установлены неточности уже имеющихся карт и в них были внесены уточнения для приведения их в соответствие с реальным ландшафтом планеты.



Какой из этих выводов правильный, а какой ложный я, к моему великому сожалению, судить не могу, т. к. для этого имеющейся информации пока явно недостаточно.

Подтверждение катастрофы

Где же можно найти подтверждение факта катастрофы, кроме физических карт, о которых мы говорили выше. Боюсь показаться неоригинальным, но ответ будет довольно прорст: во первых у нас с вами под ногами и во вторых в произведениях искусства, а именно в картинах художников. Сомневаюсь, что кто-либо из очевидцев смог бы запечатлеть саму волну, но вот последствия этой трагедии вполне себе запечатлевали. Существовало довольно большое количество художников, которые писали картины, на которых отражалась картина жуткой разрухи, которая царила в семнадцатом и восемнадцатом веках на месте Египта, современной западной Европы и Руси Матушки. Вот только предусмотрительно нам объявили, что эти художники писали не с натуры, а отображали на свотх полотнах так называемый воображаемый ими мир. Приведу работы лишь нескольких довольно ярких представителей сего жанра:

Вот как выглядели ставшие уже нам привычные древности Египта, до того как их в буквальном смысле этого слова откопали из под толстого слоя песка.

А что же в это время было в Европе? Нам помогут понять Giovanni Battista Piranesi, Hubert Robert и Charles-Louis Clerisseau.

Но это далеко не все факты, что можно привести в подтверждение катастрофы и которые ещё только предстоит мне систематизировать и описать. Есть ещё засыпанные землёй на несколько метров города на Руси Матушке, есть Финский залив, который так же засыпан землёй и стал по настоящему судоходным лишь в конце девятнадцатого века, когда по его дну был прокопан первый в мире морской канал. Есть солёные пески Москва-реки, морские раковины и чертовы пальцы, которые я ещё пацаном откапывал в лесных песках в Брянской области. Да и сам Брянск, который по официальной исторической легенде получил своё название от дебрей, якобы на месте которых он стоит, правда дебрями на Брянщине и не пахнет, но это предмет отдельного разговора и Бог даст в будущем я опубликую свои мысли на эту тему. Есть залежи костей и туш мамонтов, мясом которых ещё в конце двадцатого века в Сибири кормили собак. Всё это я более подробно рассмотрю в следующей части этой статьи.

А пока я обращаюсь ко всем читателям, которые потратили своё время и силы и дочитали статью до конца. Не оставайтесь ранодушны -- выссказывайте любые критические замечания, указывайте на неточности и ошибки в моих рассуждениях. Задавайте любые вопросы -- я отвечу на них обязательно!

Что мы знаем о литосфере?

Тектонические плиты — это крупные стабильные участки коры Земли, которые являются составными частями литосферы. Если обратиться к тектонике, науке, изучающей литосферные платформы, то мы узнаем, что большие по площади участки земной коры со всех сторон ограничены специфическими зонами: вулканической, тектонической и сейсмической активностями. Именно на стыках соседствующих плит и происходят явления, которые, как правило, имеют катастрофические последствия. К ним можно причислить как извержения вулканов, так и сильные по шкале сейсмической активности землетрясения. В процессе изучения планеты тектоника платформ сыграла очень важную роль. Ее значение можно сравнить с открытием ДНК или гелиоцентрической концепцией в астрономии.

Если вспомнить геометрию, то мы можем представить, что одна точка может быть местом соприкосновения границ трех и более плит. Изучение тектонической структуры земной коры показывают, что наиболее опасными и быстро разрушающимися, являются стыки четырех и более платформ. Данное формирование наиболее неустойчивое.

Литосфера делится на два типа плит, разных по своим характеристикам: континентальную и океаническую. Стоит выделить тихоокеанскую платформу, сложенную из океанической коры. Большинство других состоят из так называемого блока, когда континентальная плита впаивается в океаническую.

Расположение платформ показывает, что около 90% поверхности нашей планеты состоит из 13 больших по размеру, стабильных участков земной коры. Остальные 10% припадают на небольшие формирования.

Ученые составили карту наиболее крупных тектонических плит:

  • Австралийская;
  • Аравийский субконтинент;
  • Антарктическая;
  • Африканская;
  • Индостанская;
  • Евразийская;
  • Плита Наска;
  • Плита Кокос;
  • Тихоокеанская;
  • Северо- и южно-американские платформы;
  • Плита Скотия;
  • Филипинская плита.

Из теории мы знаем, что твердая оболочка земли (литосфера) состоит не только из плит, формирующих рельеф поверхности планеты, но и из глубинной части — мантии. Континентальные платформы имеют толщину от 35 км (на равнинных территориях) до 70 км (в зоне горных массивов). Учеными доказано, что наибольшую толщину имеет плита в зоне Гималаев. Здесь толщина платформы достигает 90 км. Самая тонкая литосфера находится в зоне океанов. Ее толщина не превышает 10 км, а в некоторых районах этот показатель равняется 5 км. На основании информации о том, на какой глубине находится эпицентр землетрясения и какова скорость распространения сейсмических волн, производятся расчеты толщины участков земной коры.

Процесс формирования литосферных плит

Литосфера состоит преимущественно из кристаллических веществ, образовавшихся в результате охлаждения магмы при выходе на поверхность. Описание структуры платформ говорит об их неоднородности. Процесс формирования земной коры происходил длительный период, и длится до сих пор. Через микротрещины в породе расплавленная жидкая магма выходила на поверхность, создавая новые причудливые формы. Ее свойства менялись в зависимости от смены температуры, и образовывались новые вещества. По этой причине минералы, которые находятся на разной глубине, отличаются по своим характеристикам.

Поверхность земной коры зависит от влияния гидросферы и атмосферы. Постоянно происходит выветривание. Под действием данного процесса меняются формы, а минералы измельчаются, меняя свои характеристики при неизменном химическом составе. В результате выветривания поверхность становилась более рыхлой, появлялись трещины и микровпадины. В этих местах появлялись отложения, которые нам известны как грунт.

Карта тектонических плит

На первый взгляд кажется, что литосфера стабильна. Верхняя ее часть таковой и является, но вот нижняя, которая отличается вязкостью и текучестью, подвижна. Литосфера делится на определенное число частей, так называемых тектонических плит. Ученые не могут сказать из скольких частей состоит земная кора, поскольку помимо крупных платформ, имеются и более мелкие формирования. Названия самых больших плит были приведены выше. Процесс формирования земной коры происходит постоянно. Мы этого не замечаем, поскольку данные действия происходят очень медленно, но сопоставив результаты наблюдений за разные периоды, можно увидеть, на сколько сантиметров в год смещаются границы образований. По этой причине тектоническая карта мира постоянно обновляется.

Тектоническая плита Кокос

Платформа Кокос является типичным представителем океанических частей земной коры. Она расположена в Тихоокеанском регионе. На западе ее граница проходит по хребту Восточно-Тихоокеанского поднятия, а на востоке ее границу можно определить условной линией вдоль побережья Северной Америки от Калифорнии до Панамского перешейка. Данная плита пододвигается под соседнюю Карибскую плиту. Эта зона отличается высокой сейсмической активностью.

Сильнее всего от землетрясений в данном регионе страдает Мексика. Среди всех стран Америки именно на ее территории расположено больше всего потухших и действующих вулканов. Страна перенесла большое количество землетрясений с магнитудой выше 8 баллов. Регион достаточно густонаселенный, поэтому помимо разрушений, сейсмическая активность приводит и к большому числу жертв. В отличии от Кокоса, расположенные в другой части планеты, Австралийская и Западно-Сибирская платформы отличаются стабильностью.

Движение тектонических плит

Долгое время ученые пытались выяснить, почему в одном регионе планеты гористая местность, а в другом равнинная, и почему происходят землетрясения и извержения вулканов. Различные гипотезы строились преимущественно на тех знаниях, которые были доступны. Лишь после 50-х годов двадцатого столетия удалось более детально изучить земную кору. Изучались горы, образованные на местах разлома плит, химический состав этих плит, а также создавались карты регионов с тектонической активностью.

В изучении тектоники особое место заняла гипотеза о перемещениях литосферных плит. Еще в начале двадцатого века немецкий геофизик А. Вегенер выдвинул смелую теорию о том, почему они двигаются. Он тщательно исследовал схему очертаний западного побережья Африки и восточного побережья Южной Америки. Отправной точкой в его исследованиях стала именно схожесть очертаний данных континентов. Он предположил, что, возможно, эти материки были раньше единым целым, а затем произошел разлом и начался сдвиг частей коры Земли.

Его исследования затрагивали процессы вулканизма, растяжение поверхности дна океанов, вязко-жидкую структуру земного шара. Именно труды А. Вегенера были положены в основу исследований, проводимых в 60-х годах прошлого века. Они стали фундаментом для возникновения теории «тектоники литосферных плит».

Данная гипотеза описывала модель Земли следующим образом: тектонические платформы, имеющие жесткую структуру и обладающие разной массой, размещались на пластичном веществе астеносферы. Они находились в очень неустойчивом состоянии и постоянно перемещались. Для более простого понимания можно провести аналогию с айсбергами, которые постоянно дрейфуют в океанических водах. Так и тектонические структуры, находясь на пластичном веществе, постоянно перемещаются. Во время смещений плиты постоянно сталкивались, заходили одна на другую, возникали стыки и зоны раздвижения плит. Данный процесс происходил из-за разности в массе. В местах столкновений образовывались области с повышенной тектонической активностью, возникали горы, происходили землетрясения и извержения вулканов.

Скорость смещения составляла не более 18 см в год. Образовывались разломы, в которые поступала магма из глубинных слоев литосферы. По этой причине породы, составляющие океанические платформы, имеют разный возраст. Но ученые выдвинули даже более невероятную теорию. По мнению некоторых представителей научного мира, магма выходила на поверхность и постепенно охлаждалась, создавая новую структуру дна, при этом «избытки» земной коры под действием дрейфа плит, погружались в земные недра и снова превращались в жидкую магму. Как бы там ни было, а движения материков происходят и в наше время, и по этой причине создаются новые карты, для дальнейшего изучения процесса дрейфа тектонических структур.

Землетрясение, ставшее причиной рекордных разрушений, и последующее цунами, ударившие по Японии рано утром в пятницу - жестокое напоминание о разрушительных природных катастрофах, которые могут обрушиться на заселенные города - особенно на те, которые находятся в зонах высокого риска, например, вдоль линий главных разломов земной коры.
Взгляните на пять городов, которые больше всего подвергнуты угрозе подобных катастроф из-за своего расположения.
Токио, Япония
Построенный точно на тройном пересечении трех главных тектонических плит - Северо-Американской плиты, Филиппинской плиты и Тихоокеанской плиты - Токио постоянно находится в движении. Долгая история и ознакомленность с землетрясениями подтолкнули город к созданию максимальных уровней тектонической защиты.

Токио - город, вне всяких сомнений, больше всего подготовленный к землетрясениям, это означает, что мы, вероятно, недооцениваем потенциальные разрушения, которые может нанести природа.
Столкнувшись с землетрясением силой 8,9 баллов, самое сильное землетрясение в истории Японии, Токио, находящийся в 370 км от эпицентра, перешел в автоматизированный режим остановки: лифты прекратили работу, метро остановилось, людям пришлось пройти много километров холодной ночью, чтобы добраться до своих домов за городом, там произошли наибольшие разрушения.
Цунами высотой 10 метров, последовавшее за землетрясением, смыло сотни тел на северо-восточном побережье, тысячи людей считаются пропавшими.

Стамбул, Турция
Сейсмологи давно следят за так называемыми "живыми" разломами, один из которых - Северо-Анатолийский. Он протянулся почти на 1000 километров - в основном через территорию современной Турции - и расположен между Евразийской и Анатолийской плитами. Скорость сдвига в районе их соприкосновения достигает 13-20 мм/год, но общая величина перемещения этих плит выше - до 30 мм/год. Город - смешение богатой и бедной инфраструктуры, подвергающей огромную часть 13 миллионов жителей риску. В 1999 г. землетрясение силой 7,4 балла ударило по городу Измит, это всего 97 км от Стамбула.
В то время как более старые здания, такие как мечети, выстояли, более новые здания 20 века, часто построенные из бетона смешанного с солеными грунтовыми водами и с игнорированием местных строительных норм, превратились в пыль. В регионе погибло около 18000 людей.
В 1997 г. сейсмологи прогнозировали, что с 12% возможностью такое же землетрясение может повториться в регионе до 2026 г. В прошлом году сейсмологи в журнале Nature Geoscience опубликовали данные о том, что следующее землетрясение, вероятно, произойдет на западе Измита вдоль разлома - опасные 19 км на юг от Стамбула.

Сиэтл, Вашингтон
Когда жители Тихоокеанского Северо-западного города думают о катастрофах, на ум приходят 2 сценария: мегаземлетрясение и извержение вулкана Рейнир.
В 2001 г. землетрясение на территории проживания индейцев племени нискуолли подтолкнуло город к совершенствованию плана готовности к землетрясению, были внесены несколько новых усовершенствований к строительным нормам. Как бы то ни было, много более старых зданий, мостов и дорог до сих пор не модернизированы в соответствии с новыми нормами.
Город находится на активной тектонической границе вдоль Северо-Американской плиты, Тихоокеанской плиты и плиты Хуан-де-Фука (Juan de Fuca). Древняя история обоих землетрясений и цунами записана в земле превратившихся в камень заливных лесов, а также в изустных историях, передающихся из поколения в поколения тихоокеанских северо-западных коренных американцев.
Неясно вырисовывающийся вдалеке, а когда облачный покров находится достаточно высоко открывающийся впечатляющий вид вулкана Рейнир напоминает, что это спящий вулкан и в любое время он может подтолкнуть также и гору Святой Елены.
Хотя сейсмологи чрезвычайно хорошо осуществляют мониторинг вулканических толчков и предупреждают власти о надвигающемся начале извержения - в прошлом году извержение исландского вулкана Эйяфьядлайёкюдль показало, что протяженность и продолжительность извержения всего лишь чье-то предположение. Большинство опустошений затронет восток вулкана.
Но если будет дуть нехарактерный северо-западный ветер, аэропорт Сиэтла и сам город столкнутся с большим количеством горячего пепла.

Лос-Анджелес, Калифорния
Катастрофы - не новинка для территории Лос-Анджелеса - и обо всех не говорят по телевизору.
За последние 700 лет мощные землетрясения происходили в регионе каждые 45-144 года. Последнее сильное землетрясение силой 7,9 балла произошло 153 года назад. Другими словами, Лос-Анджелес должен подвергнуться следующему сильному землетрясению.
Лос-Анджелес с населением около 4 миллионов человек при следующем сильном землетрясении может столкнуться с сильными толчками. Согласно некоторым предположениям, беря в учет всю Южную Калифорнию с населением около 37 миллионов человек, природная катастрофа может убить от 2000 до 50000 человек и нанести ущерб на миллиарды долларов.

Сан-Франциско, Калифорния
Сан-Франциско с населением более 800000 человек - другой большой город на западном побережье Соединенных Штатов, который может быть опустошен мощным землетрясением и/или цунами.
Сан-Франциско расположен рядом, хотя не точно на северной части разлома Сан-Андреас. Есть также несколько родственных разломов, проходящих параллельно по региону Сан-Франциско, повышая вероятность чрезвычайно разрушительного землетрясения.
В истории города уже была одна такая катастрофа. 18 апреля 1906 г. Сан-Франциско подвергся землетрясению силой между 7,7 и 8,3 баллов. Катастрофа стала причиной гибели 3000 человек, принесла убытки на полмиллиарда долларов и сравняла с землей большую часть города.
В 2005 г. эксперт по землетрясениям Дэвид Шварц (David Schwartz), житель Сан-Франциско, предположил, что с вероятностью в 62% регион подвергнется сильному землетрясению в течение следующих 30 лет. Хотя некоторые здания в городе построены или укреплены так, чтобы выдержать землетрясение, но, согласно Шварцу (Schwartz), многие все равно находятся в зоне риска. Жителям также советуют держать всегда при себе в готовности наборы с предметами крайней необходимости.