Промышленные и минеральные воды. Термальные источники, или горячие воды земли

Эоценовые отл (Ставрополье) йодные J до 90 мг/л.

К 1 J йод до 70 мг/л, Sr до 700 мг/л.

Термальные воды неогена: самоизлив до 50 л/с.и более, Т 70–95° С.

Прикумск К 2 – пароводяная смесь Т 104,5°С.

К 1 – пароводяная смесь Т 117 ° С.

Широкое исп. терм. вод (Чечня и др)

Особенности гидрогеологических условий бассейна,которые обязательно нужно «обыграть!

1. Наличие в зоне передовой складчатости Кавказа и в краевой зоне бассейна многочисленных молодых тектонических нарушений, связанных с эпохой альпийской складчатости.

2. Установленные многочисленные факты значительной разгрузки по зонам тектонических нарушений глубоких (К, J, возможно более глубокие) флюидов: термальные источники, источники с относительно повышенной минерализацией воды и специфическим составом компонентов, в том числе и микро., особенно широкое распространение СО 2 (район КМВ). Высокие конц. В (до 600 мг/л) как показатель поступления глубинных газо-паровых флюидов.

3. Широкое развитие в Терско-Сунженской зоне и на прилегающих площадях аномально высоких пластовых давлении в палеогеновых и особенно в меловых отложениях, которые наиболее вероятно также связаны с субвертикальной фильтрацией глубоких флюидов. ???

4. Наиболее широкое (практически до побережья Каспия) распространение в отложениях бакинского комплекса подземных вод с низкой (в осн. до 1 г/л, только в узкой прибрежной полосе до 7 г/л) минерализацией, в то время как в вышележащих комплексах хазарских и хвалынских отложений минерализация подземных вод пестрая, в отд. пунктах до 20 г/л и более. Это косвенно свидетельствует о том, что бакинский горизонт в связи с наличием слабопроницаемых глинистых пород в верхней части разреза и в вышележащих отл хазарского и хвалынского возраста залегает в условиях зоны относительно затрудненного водообмена I-го гидрогеологического этажа. В связи с чем взаимодействие с грунтовыми и верхними напорными вод. горизонтами, содержащими частично минерализованные воды континентального засоления относительно затруднено и не сказывается на составе подз. вод бакинского комплекса. Подобная «частичная» инверсия гидрогеохимического разреза весьма характерна для артезианских бассейнов аридной зоны (Сырдарьинский, Амударинский бассейны и др.) То же в Апш. и Акч. с минер. до 5 г/л.

Для подмайкопского этажа центральной части бассейна (для всех водоносных комплексов) характерны две региональные особенности:

Наличие резко выраженных АВПД с напорами подз. вод до 3000-4000 м а. в.(до 2000 и более выше поверхности земли по И. Г. Киссину)

Наличие высоких температур, изменяющихся от 55° на глубинах порядка 500 м. до 170°С и более на гл. 3500 м.

Площадь, Рельеф: Границы. Предкавказская предгорная область-до 1500 м.и более, Терско-Сунженское поднятие–до 500 –750 м., центральная часть бассейна–примерно до 100–250 м. Прикаспий до –28 м.

Дрены: реки Терек, Кума и их немногочисленные притоки.

Осадки, температуры???

Верхний гидрогеологический этаж: четвертичные, неоген-четвертичные и плиоценовые и среднемиоценовые (N 1 2) преимущественно песчано-глинистые отложения мощностью в прогибах Терско-Сунженской зоны и в центральной части бассейна до 3000-3500 м и более и выклиниваются к валу Карпинского и частично в центре поднятий Т-С обл, где непосредст. с поверхности залегают глины майкопа.

Нижним водоуп. 1 этажа являются глины майкопской свиты (Р 3 –N 1 1) мощн. до 1500–2000 м. и более в центр части бассейна. Четверт. отложения, а также Апшеронский и Акчегыльский ярусы.(плиоцен N 2 1-2). Среднемиоценовый???.

Четвертичные отложения представлены покровными, аллювиальными, эоловыми и аллювиально-морскими и морскими в прибрежной части и отложениями нижне четвертич. трансгрессий Каспия (Хвалын. и Хазарс. ярусы

Апшерон и Акчегыл тоже трансг. Каспия.

Характерное строение с наличием конт., приб. морск. и морских фаций осадков. Вероятный выдержанный водоупор–глинистые отложения апшерона («скачки» с минерализацией).

Глубины залегания уровня грунтовых вод изменяются от 50–100 м и более в предгорной зоне, до 10-20 м на Ствропольском поднятии, до 5–10 м и менее в центре басс. и до 1-3 м в прикаспийской части. Уровни напорных вод 1-го этажа на пониженных участках центра бассейна и в прикаспии вплоть до самоизлива.

Питание грунтовых вод и напорных 1-го этажа за счет инф. атм. осадков и перетекания наиболее интенсивное в предгорной зоне, за счет поглощения из рек и оросит. каналов и в центр. и прикасп. части «снизу-вверх». Разгрузка в речную сеть и в центр. а особ. в Прикаспийской части за счет испарения.

Величины питания…….Разгрузка……..

Минерализация грунтов. вод …………. В Прикаспийских степях до 10 -50 и даже до 100 г/л (солончаки) Правильнее говорить, что в центральной части бассейна грунтовые воды имеют «пеструю» минерализацию. В «ближнем» Прикаспии (т. н. черные земли) на участках распространения эоловых песков широко распространены линзы мало минерализованных (до 1,5 г/л) вод, залегающие на соленых грунтовых водах

Напорные самоизливающиеся воды в четвертичных и плиоценовых отложениях являются основой водоснабжения терр. Терско-Кумского бассейна. Производительность скважин при самоизливе в зависимости от состава пород от долей л/с до 30-40 л/с. (в сред? 2 л/с).

Верхний и средний миоцен (N 1 2-3) последний надмайкопский примерно 300 м.

В подмайкопском (П) г/г этаже бассейна выделены водоносные комплексы: палеоцен-эоценовый, верхнемеловой, верхнеюрско-нижнемеловой, среднеюрский и палеозойский, алеврито-глинистые и карбонатные породы. Общей мощностью в центральной части бассейна до 1500–2000 м. и боде. Основные водоупоры: глины верх. и сред. алба (К 1), и глины батского яруса (J 2) верхи ср. юры. (Нефтегазоносный интервал бассейна).

Все эти отложения залегают непосредственно с поверхности на северном склоне Кавказа.С ними связаны многочисленные источники пресных вод с разными дебитами, в том числе с карбонатными породами верх. мела и юры с дебитами до 1000–2000 л/с и более.

Дебиты скважин 0,1–0.5 л/с. Из известняков верх. мелов. комплекса на моноклинальных поднятиях предкавказской зоны и в Дагестане (ю-в) дебиты скв. до 460–800 л/с.

Для подмайкопского этажа бассейна (для всех комплексов) характерны две (региональные) особенности:

–наличие резко выраженных АВПД, с чем связаны иск.высокие расч. напоры подз. вод до 3000–4500 м. а. в.,(до 2000 м. и более выше поверхности земли) в Тер. Сун. области (по И.Г.Киссину).

–наличие высоких температур, изменяющихся от 55 на глубинах порядка 500 м.,.до более 170 °С. на гл. 3500 м

Точки зрения на формирование АВПД. !!!

Минераловодческий выступ

Гидрогеология СССР, глава 4

Термальные воды как комплексное полезное ископаемое могут быть использованы: 1) для теплоснабжения (отопление и горячее водоснаб-жение), а в отдельных случаях и получения электроэнергии; 2) в лечебных целях; 3) как источник получения ценных химических продуктов; 4) для различных технологических нужд (сушка, мойка и т. п.). Не во всех районах распространения термальные воды могут быть использо-ваны по всем перечисленным направлениям. Чаще всего они применяются в лечебных целях и в этих случаях должны рассматриваться как минеральные. Выше было отмечено, что потребности в минеральных во-дах чаще всего сравнительно невелики.

В тех случаях, когда термальные воды используются в качестве хи-мического сырья, они рассматриваются как промышленные воды. В на-стоящем разделе рассмотрим в основном возможность использования термальных вод по первому из выделенных направлений.

Общие сведения, распространение термальных вод

К термальным водам относятся подземные воды, имеющие температуру от 20~ С и выше.

Эта температурная граница может служить разделом между менее подвижными (вязкими) холодными водами и более подвижными (ме-нее вязкими) термальными водами.

Для практических целей можно принять классификацию подземных вод по температурному признаку, приведенную в табл. 33.

Таблица 33

Классификация подземных вод по температурному признаку

В дальнейшем изложении мы будем пользоваться приведенной в табл. 33 классификацией. Следует отметить, что термальные воды (т. е. воды с температурой от 20 до 100~ С) в пласте и при выходе на поверхность земли находятся в жидкой фазе, тогда как перегретые воды (т. е. воды, нагретые до температуры сыше 100~ С) в термодинамиче-ских условиях пласта находятся, как правило, в жидкой фазе, а при вы-ведении их на поверхность дают пароводяные смеси и пары. Изотерми-ческая поверхность в 20~ С в зависимости от геотермических условий верхних частей земной коры залегает на различных глубинах - от 200 - 300 м на юге Советского Союза (например, в пределах Скифской плиты) до 1200 - 1500 м в области развития многолетнемерзлых пород (напри-мер, на севере Сибирской платформы).

Охарактеризуем основные закономерности распространения тер-мальных вод в пределах СССР. В результате проведенных в последние годы организациями Министерства геологии СССР и Академии наук СССР гидрогеотермических исследований установлено, что термальные воды распространены в геолого-структурных областях двух типов - платформенных и складчатых.

В пределах платформенных областей развиты пластово-поровые и пластово-трещинные термальные воды, в складчатых областях - тре-щинно-жильные воды (только в межгорных впадинах термальные воды приобретают пластово-трещинный или пластово-поровый характер).

Краткая характеристика закономерностей распространения тер-мальных вод дается в укрупненном плане, применительно в основном к схеме гидрогеологического районирования, приведенной в гл. I на-стоящей работы. Исключение составляют районы Скифской платфор-менной области (Западно-Крымский, Азово-Кубанский и Восточно-Предкавказский), которые по принятому районированию отнесены к Крымско-Кавказской складчатой области, но при характеристике термальных вод рассматриваются как отдельная платформенная об-ласть. Кроме того, при описании Восточно-Европейской платформенной области рассматривается ряд примыкающих к ней артезианских бас-сейнов, относящихся к Тимано-Уральской гидрогеологической складча-той области.

Наибольшую площадь термальные воды занимают в пределах Западно-Сибирской платформенной артезианской области, где они развиты в трех основных водоносных комплексах мезозоя.: апт-сеноманском, неокомском и юраком; практический интерес представляют первые два. В апт-сеноманском комплексе, распростра-ненном почти на всей площади бассейна и залегающем на глубине от 200 до 1300 м (при мощности, изменяющейся от 100 до 800 м, реже бо-лее), заключены термальные воды, имеющие температуру в пластовых условиях от 20 до 60~ С. При вскрытии скважинами эти воды дают са-моизлив с температурой на устье 35 - 45~ С, редко более; напоры вод на большей площади бассейна превышают поверхность земли на 20 - 40 м. Минерализация и состав вод изменяются в направлении с юга на север (от областей питания к областям стока): от азотных в основном: гидрокарбонатных натриевых с минерализацией до 1 ,г/л на юге (Кол-пашево, Купино, Ипатово и др.) до метановых хлоридных натриевых с минерализацией до 10 - 15 г/л на севере (Тара, Викулово, Сургут и др.). Расходы скважин при самоизливе достигают 5 - 15 л/с, редко более.

По данным испытания нефтеразведочных скважин, скважин на пресные, термальные, минеральные и йодные воды, водопроводимость во-доносных пород комплекса изменяется от 20 до 200 м2/сут, причем на-ибольшая ее величина отмечается в полосе, протягивающейся от Ку-пино через Тару на Сургут, т. е. в центральной.части бассейна, где ком-плекс имеет наибольшую мощность.

Неокомский водоносный комплекс развит почти на той же площади, что и аптсеноманский; он залегает на глубинах от 300 до 1800 м, реже более, имеет мощность от 200 до 1000 м. Комплекс заключает термаль-ные воды, имеющие в пластовых условиях температуру от 20 до 95~ С. При вскрытии скважинами воды самоизливаются, избыточные напоры превышают поверхность земли на 20 - 60 м. В ряде скважин при дли-тельном самоизливе температура воды достигает 65 - 70~, редко более (Колпашево, Омск, Тобольск и др.).

В неокомском водоносном комплексе, как и в апт-сеноманском ми-нерализация термальной воды увеличивается с юга на север в направлении общего потока подземных вод глубоких горизонтов бассейна: от 1 - 3 г/л на юге и востоке (Ипатово, Колпашево и др.) до 15 - 25 г/л на севере (Омск, Тобольск, Тара, Сургут и др.). Состав вод также изме-няется от азотного гидрокарбонатного натриевого до метанового хло-ридного натриевого. К этому комплексу в центральных частях бассейна приурочены нефтегазоносные залежи и йодные воды. Коллекторские свойства пород неокома непостоянны вследствие изменчивости литоло-гического состава и мощности водовмещающих пород. Дебиты скважин при самоизливе изменяются от 5 до 10 л/с, редко более. Водопроводи-мость пород, по данным испытания скважин, пройденных при разведке нефтяных месторождений, термальных, минеральных и йодных вод, ко-леблется от 20 до 60 м2/сут, в отдельных случаях повышаясь до 80 - 100 м2/сут. Почти во всей центральной части бассейна водоносный комплекс имеет водопроводимость 40 - 60 м2/сут, лишь в Ханты-Мансий-ском районе вследствие преобладания среди пород комплекса глини-стых разностей этот показатель снижается до 10 - 20 м2/сут и более.

Юрский водоносный комплекс, залегающий на складчатом фунда-менте, имеет изменчивую мощность - от 100 до 1000 м и более. Наи-большая глубина залегания отмечается в центральных частях бассейна где она часто превышает 2500 м. Температура вод в пластовых усло-виях достигает 100 - 150~ С в более погруженных северных частях бас-сейна, но при вскрытии их скважинами редко составляет на устье 65 - 70~С (Омск).

Почти на всей площади развития юрский комплекс заключает мета-новые хлоридные натриевые термальные воды, минерализация которых изменяется от 5 - 10 г/л на периферии до 50 г/л, редко более в центре. Вскрываемые скважинами термальные воды комплекса самоизлива-ются с небольшими расходами, обычно менее 5 л/с. На ряде участков не удается вызвать самоизлив вследствие плохих коллекторских свойств пород комплекса, обусловливающих слабый водоприток к скважинам.

На территории Скифской платформенной области развиты разновозрастные водоносные комплексы с термальной водой. В ее западной причерноморской части термальные воды приурочены к песчано-глинистым отложениям палеогена, карбонатным и терриген-ным породам мела и юры, причем юрский водоносный комплекс распро-странен лишь на юге Молдавии (Преддобруджинский прогиб). Залега-ют термальные воды на глубине от 300 - 500 до 3000 м (в Преддобруд-жинском прогибе несколько глубже). В палеогеновом и верхнемеловом комплексах содержатся солоноватые и соленые термальные воды. На-поры вод не всегда достигают поверхности земли. Водообильность пород незначительная и скважины самоизливают с расходами от 1 - 3 л/с до долей литра в секунду. В нижнемеловои и юрском водоносных ком-плексах содержатся в.основном рассольные хлоридные натриевые тер-мальные воды. Напоры вод местами не достигают поверхности земли, а дебиты скважин редко превышают 1 л/с. Вследствие плохих фильтра-ционных свойств коллекторов, сказывающихся на дебитах скважин, температура вод, поднятых на поверхность, редко превышает 30 - 40~ С, хотя в условиях пласта температура достигает 70 - 90~ С.

В равнинном Крыму термальные воды содержатся в водоносных комплексах миоцена, палеогена, верхнего и нижнего мела и юры, разви-той только в предгорной части. Миоценовый комплекс содержит слабо-термальные солоноватые воды; при опробовании дебиты скважин обыч-но небольшие. В карбонатных и терригенных отложениях палеогена заключены в основном соленые хлоридные натриевые воды. В централь-ных частях Крыма из скважин обычно самоизливается слаботермальная вода с дебитами до 1 л/с; на Тарханкуте в зоне дислокаций дебит скважин местами повышается до 15 л/с, а температура воды достигает 60~ С и более (Глебовская площадь).

Верхне- и нижнемеловые водоносные комплексы, сложенные карбо-натными и терригенными отложениями мощностью до 800 - 1000 м, рас-пространены на всей площади равнинного Крыма, прослеживаясь и се-вернее его. В этих отложениях заключены термальные воды от солоно-ватых на юге (Саки, Евпатория) до рассольных на севере (Геническ). При вскрытии скважинами эти воды самоизливаются, дебиты скважины при самоизливе колеблются от 1 до 10 л/с, местами увеличиваясь до 20 л/с, а температура на устье изменяется от 30 - 40~ С (Саки, Евпа-тория) до 60 - 70~ С (Тарханкут, Геническ). Водопроводимость моло-вых пород, определенная по данным опробования скважин водозабора Саки - Евпатория и нефтеразведочных скважин, достигает в верхнеме-ловом комплексе 30 м2/сут, в нижнемеловом 40 м2/сут.

В юрском водоносном комплексе вскрываются слаботермальные (до 40~ С) солоноватые воды, при самоизливе которых дебит скважин изменяется от 2 до 10 л/с, реже более.

В пределах восточных районов Скифской артезианской области распространены в основном те же водоносные комплексы с термальной водой, что и в ее западных районах.

Неогеновые водоносные комплексы с термальной водой (в основ-ном акчагыл-апшеронский, чокрак-караганский) развиты в пределах Азово-Кубанского и Восточно-Предкавказского артезианских бассейнов. Сложены они песчано-глинистыми и в меньшей степени карбонатными породами, имеют значительную мощность (до 500 - 1000 м каждый) и содержат термальные воды от пресных до соленых, в наиболее погру-женных частях (3500 - 4000 м) до слаборассольных (Караман). На-поры вод превышают поверхность земли на 20 - 100 м, реже более. Скважины самоизливают с дебитами от 5 до 20 л/с, а температура воды на устье достигает 50 - 70~С (Махачкала), местами увеличивается до 90 - 100~С (Кизляр, Ханкала). Особенно водообильны чокрак-караган-ские водоносные горизонты в пределах Дагестана и Чечено-Ингуше-тии. Здесь водопроводимость чокракских и караганоких отложений до-стигает 150 - 200 м2/сут и более (Махачкала, Избербаш, район Гроз-ного и др.).

Палеогеновые водоносные комплексы (хадум-майкопский и палео-цен-эоценовый) развиты повсеместно и содержат термальные воды от солоноватых (на юге) до слаборассольных (центральные районы Пред-кавказья), преимущественно метановые хлоридные натриевые. При вскрытии скважинами воды самоизливаются с расходами от 5 до 15л/с, температурой на изливе до 90~С (Георгиевск, Черный рынок и др.).

Верхнемеловой и нижнемеловой водоносные комплексы, вскрывае-мые на глубине 1000 - 2000 м и более, на большей площади развития содержат соленые и рассольные метановые хлоридные натриевые тер-мальные воды; скважины при самоизливе вод имеют расходы в преде-лах 5 - 15 л/с, причем дебиты уменьшаются в направлении с юга на-север. На юге, в полосе, протягивающейся вдоль предгорий, распростра-нены термальные воды от пресных до солоноватых и соленых. Темпе-ратура воды на устье колеблется от 50 - 80~ С в южных районах при-глубине горизонта 1000 - 2500 м (Черкесск, Нальчик) до 100~ С и не-сколько более в центральных районах при глубине 2500 - 3.000 м (При-кумск, станица Прасковейская), Водопроводимость коллекторов мело-вых комплексов редко превышает 100 м2/сут, обычно значительно мень-ше (20 - 60 м2/сут).

В терригенно-карбонатных соленосных отложениях юры заключены рассольные (до 160 г/л и более) метановые хлоридные натриевые термальные воды, имеющие на юге избыточные напоры до 100 - 150 м и более; в северном Прикаспии напоры снижаются до уровня земли. Расходы скважин при самоизливе в том же направлении уменьшаются от 15 до 1 л/с, температура воды при самоизливе обычно не превы-шает 40 - 60~ С.

Следует отметить, что в Предкавказском районе отложения от нео-гена до юры являются нефтегазоносными.

В Туранекой платформенной артезианской об-ласти термальные воды приурочены в основном к мезозойским кар-бонатным и терригенным отложениям, в верхней юре - соленосным породам.

В Сырдарьинском артезианском бассейне, в северной части Чуй-ского бассейна, в бассейнах Кызылкумской зоны поднятий и Бухаро-Каршинском гидрогеологическом районе развиты в основном пресные и солоноватые воды, заключенные в альб-сеноманском водоносном ком-плексе, залегающем на глубине от 500 до 2000 м. Из скважин, вскрываю-щих эти воды, происходит самоизлив воды с расходами от 2 до 15 л/с, редко более, с температурой воды на устье от 40 до 60~ С и несколько выше. Примерно такие же гидрогеотермические условия наблюдаются на п-ове Мангышлак, на участках, примыкающих с севера и юга к го-рам Каратау.

Во всех перечисленных районах водопроводимость коллекторов мелового водоносного комплекса колеблется от 20 до 100 м2/сут, ме-стами больше, чаще изменяется в пределах 30 - 60 м2/сут.

На остальной площади Туранской области в меловых отложениях развиты соленые и рассольные термальные воды с небольшими расхо-дами и температурой на изливе, редко превышающей 50 - 60~ С.

В юрском водоносном комплексе заключены термальные воды от рассольных до крепких рассолов (до 350 г/л и более). Высокая мине-лизация вод вызывает быструю закупорку устьев скважин выпадаю-щими солями из самоизливающихся вод.

Отмечается следующая общая закономерность: в западной части Туранской артезианской области (к западу от Аральского моря) в во-доносных комплексах мезозоя содержатся главным образом соленые и рассольные термальные воды, с которыми контактируют газовые и неф-тяные залежи; в восточной части области распространены в основном пресные и солоноватые термальные воды, газовые и нефтяные залежи отсутствуют.

В системах артезианских бассейнов Восточно-Европейской и Во-сточногСибирской гидрогеологических платформенных областей тер-мальные воды относятся к рассольным (вплоть до крепких рассолов) и, как правило, при вскрытии не самоизливаются. При откачке дебиты скважин очень низкие (до 1 - 2 л/с) при значительных понижениях.

На площади Восточно-Европейской плаформенной артезианской области термальные воды распространены по-всеместно, за исключением ее западной части, где вследствие неболь-шой мощности осадочного чехла термальные воды не встречены.

На большой площади артезианской области основным водоносным комплексом с термальной водой является девонский, сложенный терри-генно-карбонатной соленреной толщей. В нем заключены воды с мине-рализацией от 100 до 250 г/л и более, температурой на глубине пласта до 60~ С. В вышележащих каменноугольных отложениях заключены слаботермальные рассолы. Пермский водосносный комплекс, развитый в пределах Печорской, Каспийской, Днепровско-Донецкой впадин, Пред-уральского прогиба, содержит рассольные термальные воды.

На севере Печорской системы бассейнов, в Балтийско-Польском и Каспийском артезианских бассейнах развиты термальные соленые и рассольные воды в мезозойских отложениях (от триаса до мела). Во всех перечисленных районах из-за плохих фильтрационных свойств во-довмещающих пород дебиты скважин при откачках не превышают 1 - 2 л/с, обычно они меньше. Вследствие этого полученная рассольная во-да почти нигде не имеет температуру более 40~ С, хотя местами и под-нимает с глубин, (превышающих 2500 м. На большей глубине темпера-тура воды в ряде районов достигает 75 - 85~ С (Нарьян-Мар, глубина 3500 м; Доброгостов, г. Долина, глубина 2500 - 3000 м; Новоузенская разведочная площадь, глубина 2700 - 3000 м и др.).

На илощади Восточно-Сибирской платформенной ар-тезианской области основная масса термальных вод приурочена к соленосным кембрийским отложениям. Воды относятся к рассольным (минерализация до 350 - 450 г/л), как травило, при вскрытии скважина-ми не самоизливаются, и вследствие плохих фильтрационных свойств по-род дебиты скважин при откачках незначительные (доли литра в секун-ду), при понижениях, достигающих десятки метров. На глубине 2500 - 3000 im температура в пластовых условиях достигает 50 - 75~ С. В юрских и меловых отложениях восточной части Якутского артезианского бассей-на (Вилюйская синеклиза и прилежащий к ней Приверхоянский прогиб) термальные воды, вскрытые скважинами, слабо самоизливаются, при этом дебиты скважин составляют 1 - 2 л/с. Минерализация вод изме-няется от 20 до 90 г/л. На глубине пласта температура достигает 75 - 85~ С (Усть-Вилюйские скважины, глубина 2550 - 2850).

Перейдем к характеристике термальных вод, распространенных в разновозрастных гидрогеологических складчатых областях. Среди них выделяются интенсивной термальной деятельностью Камчатский и Ку-рильский районы современного вулканизма, относимые к области кай-нозойской (камчатской) складчатости.

В Камчатском гидрогеологическом районе наи-более крупные термальные источники и пароводяные струи сосредото-чены в пределах Восточно-Камчатского поднятия, где находятся все действующие вулканы Камчатского полуострова. Все термальные ис-точники связаны с крупными зонами разломов, рассекающих толщи вулканогенно-осадочных пород.

Температура воды наиболее крупных источников колеблется от 60 до 100~ С, а дебиты их от 10 до 30 л/с (Пара/Цунские, Киреунские, Апапельские, Малкинские, Двухъюрточные и др.). Минерализация воды источников чаще менее 1 г/л, состав от гидрокарбонатно-сульфатного до хлоридного натриевого с содержанием кремнекислоты до 80 - 100 мг/л. Парогидротермы в естественных выходах имеют температуру 100~ С и несколько более (Паужетские, Жировские, Узонские, Семя-чинские и др.), состав их хлоридный натриевый, минерализация 3 - 5 г/л. При вскрытии скважинами температура пароводяных смесей уве-личивается до 150 - 200~ С (Паужетские, Бол. Банные).

На Курильских островах наибольшее практическое значе-ние имеют парогидротермы, выходы которых связаны с крупными зо-нами разломов (Горячий Пляж и др.). Эти парогидротермы по тем-пературе, составу и минерализации сходны с камчатскими.

Крупные термальные источники встречены в Корякско-Камчат-ском поднятии, где они связаны с крупными тектоническими наруше-ниями (Олюторский, Тымлатский, Паланский, Панкратовский, Ру-саковский источники). Температура источников достигает 40 - 95~С, дебиты 15 - 50 л/с, редко более. По составу и минерализации они близки к источникам Восточно-Камчатского поднятия.

Межгорные артезианские бассейны (Западно- и Центрально-Кам-чатский, Анадырский, Пенжинский и др.) в гидрогеотермическом отно-шении почти не изучены и о термальных водах этих бассейнов судить в настоящее время трудно. По данным редкой сети нефтеразведочных скважин, здесь можно встретить слаботермальные воды.

К кайнозойской складчатости относится складчатая структура С а-халинской гидрогеологической области, где в межгор-ных артезианских бассейнах, выполненных палеогеновыми и неогено-выми терригенными отложениями, распространены термальные воды, вскрываемые глубокими нефтеразведочными скважинами. Основными водоносными комплексами с термальной водой являются миоценовые и плиоценовый комплексы. Мощность песчаниковых горизонтов в этих комплексах изменяется от десятков метров до 100 м и более.

В наиболее крупном Северо-Сахалинском и связанным с ним Па-ронайском артезианских бассейнах развиты гидрокарбонатные и хло-ридные натриевые термальные воды с минерализацией от 1 до 20 г/л, местами более. В скважинах глубиной 2700 - 3300 м температура вод в пластовых условиях достигает 100~ С и более, а при самоизливе на устье она составляет 50 - 70~ С, при этом дебиты скважин равны 3 - 5 л/с.

Водопроводимость пород по отдельным комплексам колеблется от 20 до 60 м2/сут, редко больше.

К кайнозойской (альпийской) гидрогеологической складчатой об-ласти относятся структуры, протянувшиеся вдоль южных границ стра-ны (от Карпат до Памира): Карпатская и Крымско-Кавказская, Ко-петдаг-Большебалханская и Памирская гидрогеологические складча-тые области.

В Карпатской области термальные воды вскрываются скважинами в Мукачевоком и Солотовинском межгорных бассейнах, выполненных миоценовыми терригенными соленосными отложениями. В связи с этим здесь преобладают соленые и рассольные хлоридные натриевые тер-мальные воды, расходы которых при самоизливе редко превышают 1 л/с, а температура 35~ (Вышково, Залуж и др.). В мегантиклинории Карпат термальные воды не встречены.

В Горном Крыму термальные воды в практически значимых коли-чествах также отсутствуют. Из Ялтинской скважины с глубины 1300 м, вскрывшей сланцы таврической свиты, произошел самоизлив рассоль-ной хлоридной натриевой воды с температурой до 27~ С, дебит скважи-ны составлял 0,2 л/с.

В пределах Большого Кавказа термальные источники выходят вдоль тектонических нарушений и обычно имеют температуру от 20 до 50~ С, дебиты их не превышают 1 - 2 л/с, а минерализация воды чаще всего бывает не более 1 г/л. По составу вода источников гидрокарбо-натно-сульфатная натриевая и лишь местами хлоридная натриевая с минерализацией до 5 г/л (Кармадон, Горячий Ключ).

На Малом Кавказе развиты в основном углекислые воды, с темпе-ратурой от 20 до 50~ С, лишь источники Джермука и Исти-Су имеют температуру 65 - 70~ С. По составу вода в основном гидрокарбонатная натриевая. Дебиты источников небольшие, но при разбуривании участ-ков их выхода суммарный дебит скважин доходит до 15 л/с (Бор-жоми, Джермук, Анкаван и др.).

В Аджаро-Триалетской гидрогеологической складчатой зоне и в Талыше имеются азотные и азотно-метановые хлоридные натриевые (Массалинские, Ленкоранские, Астаринские источники) и хлоридно-ги-дрокарбонатно-сульфатные натриевые (Тбилисские источники) термы. Минерализация вод от 1 до 20 г/л. При вскрытии скважинами воды самоизливаются с расходами от 5 до 30 л/с и более; температура воды составляет 40 - 65~ С. К Малому Кавказу тяготеют Нахичеванский и Араратский межгорные артезианские бассейны, выполн-енные миоцено-выми соленрсными, в основном глинистыми, отложениями с тонкими песчаными слоями. Нефтеразведочные скважины глубиной до 2500 - 3300 м вскрывают соленые и рассольные термальные воды, расходы ко-торых при самоизливе, как правило, не превышают 1 л/с.

В межгорном Восточно- Причерноморском (Рион-ском) артезианском бассейне основным водоносным ком-плексом с термальной водой является неокомский, сложенный карбо-натными породами, залегающими на глубине от 1000 до 2500 м и более. Глубокими скважинами (2000 - 3200 м), пробуренными в северной ча-сти. Рионского бассейна, выводятся на поверхность земли пресные суль-фатно-хлоридные (и гидрокарбонатные) натриевые высокотермальные воды с температурой на изливе от 70 до 100~ С и расходами от 10 до 50 л/с (Менджи, Зугдиди), редко до 80 л/с (Охурей). В Мегрельской зоне тектонических нарушений скважины глубиной 800 - 1000 м вскры-вают воды с температурой до 80~ С, напорами до. 80 - 150 м выше поверх-ности земли, дебитами при самоизливе до 40 л/с (Цаиши, Накалакеви).

В юго-западной части этого бассейна минерализация вод из нижне-мелового комплекса увеличивается до 3 - 20 г/л и более, состав изме-няется на хлоридный натриевый, дебиты скважин не превышают 15 л/с, температура воды на изливе 80~ С (Челадиди, Квалони). В восточной части бассейна нижнемеловой водоносный комплекс залегает на глу-бине 500 - 1500 м, и скважинами на дневную поверхность выводятся со-лоноватые воды с температурой до 45~ С, дебитами 3 - 7 л/с (Квибиси, Квемо-Симонети, Аргвети и др.). Водопроводимость пород нижнемело-вого водоносного комплекса колеблется от 20 до 300 м2/сут, местами более.

В остальных водоносных комплексах (юрском, верхнемеловом, па-леогеоновом, неогеновых) заключены минерализованные термальные воды (в соленосном юрском вплоть до рассолов); коллекторские свой-ства пород значительно хуже, чем у нижнемелового комплекса, поэтому расходы скважин при самоизливе обычно не превышают 3 - 5 л/с.

В Курииском межгорном артезианском бассейне, также входящем в Кавказский район, термальные воды на доступных глубинах заключены в третичных терригенных отложениях. На большей площади распространения эти отложения содержат соленые и рассоль-ные воды, при вскрытии самоизливающиеся с небольшим расходом. Ос-новным водоносным комплексом счтермальной водой на востоке бас-сейна является плиоценовый (продуктивная толща), с которым свя-заны все нефтяные и газовые месторождения Азербайджана. Лишь в юго-западной части Куринского бассейна (Кировобадская зона) выяв-лены пресные и солоноватые термальные воды в апшеронском и акча-гульском водоносных комплексах. В майкопском водоносном комплексе здесь содержатся соленые воды с минерализацией до 20 г/л. Скважины глубиной от 600 до 2500 м выводят самоизливающиеся воды с расхо-дами до 10 л/с, редко более (Барда, Мир-Башир и др.). Температура воды на устье скважин колеблется от 30 до 65~ С. Водопроводимость по-род изменяется от 20 - 30 м2/сут (майкопский комплекс) до 40 - 80 м2/сут (апшеронский комплекс).

В 3ападно-Туркменском межгорном артезиан-ском бассейне развиты водоносные комплексы с термальной водой в апшеронских, акчагыльских и красноцветных отложениях. Основной водоносный комплекс приурочен к красноцветной песчано-глинистои толще мощностью до 1500 - 2000 м. К ней приурочены основные нефтяные месторождения района. Термальные воды, вскрываемые на глубине от 100 до 4000 м, рассольные (до 200 г/л и более), при самоизливе име-ют температуру до 50 - 80~ С и дебиты до 20 л/с, реже более.

В гидрогеологической складчатой зоне Копет-Дага, прилежащей к Западно-Туркменскому бассейну, термальные воды выходят на по-верхность земли в виде источников вдоль разлома, ограничивающего северный фас Копет-Дага (Арчман, Коу и др.). Воды источников прес- ные и слабосолоноватые, хлоридно-сульфатно-гидрокарбонатные нат-риевые, температура до 35~ С; дебиты источников колеблются от 50 до 150 л/с.

Район Памира входит в область альпийской складчатости. Здесь в глубоких ущельях по крупным зонам разлома, секущим дислоциро-ванные древние изверженные и метаморфические породы, выходят тер-мальные источники, чаще всего с пресной водой, нагретой до 60 - 72~ С. Среди этих источников выделяются две группы: азотные, которые встре-чаются в центральной и юго-восточной частях района, и углекислые, расположенные главным образом в юго-западной его части. Расходы источников от 2 до 15 л/с (Джиландинский, Яшкульский, Иссык-Бу-лакский, Гарм-Чашминский, Лянгарокий и др.).

Состав воды азотных источников преимущественно сульфатно-ги-дрокарбонатный натриевый, углекислых - гидрокарбонатный натрие-вый (и натриево-кальциевый).

В области мезозойской складчатости отмечаются выходы термаль-ных источников. В ряде артезианских бассейнов, приуроченных к меж-горным впадинам, скважинами вскрываются термальные воды с не-значительными дебитами. Расположена эта область на востоке нашей страны, протягиваясь от Северного Ледовитого океана до Японского моря и отделяясь от гидрогеологической области кайнозойской (кам-чатской) складчатости мощным Чукотско-Катазиатским вулканоген-ным поясом, который рассматривается как наложенная структура, воз-никшая в позднемезозойское время. К этому поясу также приурочены выходы термальных источников, сходных по составу с источниками об-ласти мезозойской складчатости. Наиболее мощными из терм этого обширного района являются источники Чукотского полуострова в В е р-хояно-Чукотской гидрогеологической складчатой области, имеющие температуру до 60 - 80~ С и расходы от 5 до 70 л/с (Чаплинский, Сенявинский, Мечигменский, Кукуньский и др.). Состав воды всех чукотских источников хлоридный натриевый, минерализация изменяется от 1,5 до 40 г/л.

В Охотском секторе вулканогенного пояса известен ряд источников с температурой воды от 40 до 90~ С (Таватумский, Мотыклейский, Бе-ренджинский, Тальский). Наиболее нагреты воды Тальского источника (90~С). Суммарный расход двух скважин, пройденных в пределах ис-точника, достигает 10 л/с. Другие источники имеют расходы, близкие к указанному.

В Приморском секторе вулканогенного пояса, принадлежащего Сихотэ-Алинс-кой гидрогеологической области, имеются редкие азотные термы, нагретые до 30 - 55~ С (Анненские, Тумнинские, Ван-Гоусские), с расходами от 1,5 до 7 л/с. Состав их в основном гидрокар-бонатный натриевый, Минерализация воды менее 1 г/л. Межгорные бас-сейны (Олойский, Зырянский), приуроченные к Колымскому массиву, в гидрогеотермическом отношении совершенно не изучены. Межгорные впадины Сихотэ-Алинской гидрогеологической складчатой области (Суйфунекая, Приханкайская, Средне-Амурская) и приуроченные к ним артезианские бассейны выполнены значительно. литифицирован-ными и дислоцированными меловыми породами, перекрытыми сверху относительно маломощным чехлом рыхлых кайнозойских отложений. Глубина до фундамента впадин редко достигает 2000 м. По.данным не-многочисленных глубоких скважин (до 1100 - 1250 м) отмечены очень слабые водопритоки пресных и солоноватых вод. Темепратура воды на забоях глубоких скважин не превышала 35~ С.

Термальные воды широко распространены в обширной гидрогеоло-гической складчатой области герцинид Азиатского пояса, протягиваю-щегося в пределах Советского Союза от западных отрогов Тянь-Шаня до Алтая и от Забайкалья до Охотского побережья.

Наибольшее число термальных источников отмечено в Т я н ь -Шаньской складчатой области, выходы их связаны с крупны-ми зонами разломов. Температура воды в этих источниках изменяется от 30 до 90~ С, дебиты родников - от 3 до 50 л/с (Ходжа-Оби-Гарм, Оби-Гарм, Иссык-Ата, Ак-Су, Алма-Арасан и др.). Минерализация вод, как правило, не превышает 1 г/л, состав сульфатно-хлоридный натриевый, лишь в единичных источниках отмечается хлоридный натриевый состав и минерализация от 3 до 13 г/л (Джеты-Огуз, Явроз).

К Тянь-Шаньской гидрогеологической области приурочен ряд сложно построенных межгорных бассейнов, наиболее крупными из них являются Южно-Таджикский, Ферганский и Илийский. В первом тер-мальные воды в основном заключены в палеогеновой и меловой соле-носных терригенно-карбонатных толщах. Неогеновые отложения, сло-женные красноцветными в основном глинистыми отложениями, в осе-вых частях Сурхан-Дарьинской, Кафирниганской, Вахшской и Куляб-ской синклиналей имеют мощность до 4000 м, содержат маломощные водоносные горизонты с соленой водой. В юрских соленосных породах заключены рассольные воды. Основной разведуемый комплекс здесь палеогеновый, мощность его достигает 400 м. Скважины, пройденные до глубины 2000 м, вывели на земную поверхность из палеогеновых пород самоизливающиеся воды с температурой 25 - 50~ С и расходами 2 - 15 л/с, реже более. В краевых частях структур минерализация тер-мальных вод колеблется от 5 до 50 г/л, увеличиваясь с погружением пород до 200 г/л и более. По составу воды метаново-азотные и метано-вые хлоридные натриевые. Примерно такую же температуру и состав имеют воды, которые выводятся скважинами из мелового водоносного комплекса общей мощностью до 900 м. В Душанбинском районе мине-рализация вод обычно не превышает 10 г/л, а дебиты скважин три са-моизливе достигают 10 - 15 л/с при температуре воды на устье, равной 40 - 60~ С; на юге бассейна воды рассольные.

В Ферганском бассейне в неогеновых, палеогеновых, меловых и юрских отложениях на большей площади их распространения заключе-ны соленые и рассольные термальные воды, которые выводятся глубо-кими (от 1200 до 3800 м) скажинами. Воды самоизливающиеся, с тем-пературой на изливе 40 - 70~ С, расходами 1 - 5 л/с (в неогеновом гори-зонте до 15 л/с), лишь в краевых частях бассейна в отдельных струк-турах, в зонах тектонических нарушений дебиты скважин при самоиз-ливе достигают до 30 л/с, воды солоноватые с температурой 35 - 40~ С (юрский комплекс, Джалал-Абад).

В Илийоком артезианском бассейне (Джаркентская часть) мезо-зойские отложения (от триаса до мела) содержат термальные воды, са-моизливающиеся с расходом до 30 - 75 л/с, с температурой от 50 до 95~ С. Глубина вскрытия этих вод колеблется от 1200 до 2700 м. Воды пресные и слабосолоноватые, от гидрокарбонатных до хлоридных нат-риевых.

В Алма-Атинской части Илийского бассейна скважины глубиной до 3100 м вскрывают в неогеновых и палеогеновых отложениях слабоводообильные прослойки с термальной водой от пресной до рассольной (до 55 г/л в Алма-Атинской скважине).

В Иссык-Кульском бассейне к палеогеновым и неогеновым отложе-ниям приурочены соленые и рассольные термальные воды. Опробова-ние глубоких скважин показало различную водообильность пород.

Балхаш-Алакульский и Зайсанский межгорные артезианские бас-сейны имеют сравнительно небольшую (около 1.000 - 1500 м) глубину до фундамента (в Ферганском и Таджикском - до 8 - 10 км, в Илий-ском - 4 - 6 км). В неогеновых и палеогеновых отложениях, выполняю-щих эти бассейны, вскрываются пресные и солоноватые термальные воды. В Балхаш-Алакульском бассейне расходы самоизливающихся скважин достигают 10 л/с, а температура воды на изливе 30 - 50~ С. В Зайсанском бассейне водообильность пород незначительная. Меловые и юрские отложения, наличие которых можно предполагать в указан-ных бассейнах, скважинами не вскрыты и степень их водоносности не-известна.

В гидрогеологических складчатых областях За-байкалья и Приамурья имеется ряд термальных источников, нагретых до 45 - 70~ С (Кыринский, Былыринский, Альский, Тырмин-ский, Кульдурский). Дебиты источников обычно не превышают 5 л/с. Выведенные двумя скважинами термальные воды на Кульдурском ме-сторождении имеют температуру 72 - 73~ С, суммарный расход до 22 л/с. Вода источников пресная азотная, от гидрокабонатного до гидрокарбо-натно-хлоридно-сульфатного натриевого состава.

В многочисленных межгорных артезианских бассейнах этого рай-юна, выполненных террйгенными и вулканогенными отложениями юры, мела и кайнозоя и имеющих структуру грабенов, гидрогеотермические условия изучены очень слабо. Судя по данным испытания скважин глу-биной до 2800 м, пройденных в наиболее крупном по размерам Зейско-Буреинском бассейне, дебит скважин, вскрывших меловые породы, ока-зался ничтожно малым, равным десятым и сотым долям метра в секун-ду. Температура воды на глубине 2500 - 2800 м не превышала 75~ С, минерализация увеличивалась от 1,4 г/л на глубине 750 м до 2,5 г/л на тлубине 2000 м. По составу воды гидрокарбонатно-хлоридные натрие-вые. Такие же коллекторские свойства пород можно ожидать и в других межгорных артезианских бассейнах, сходных по типу слагающих их пород с Зейско-Буреинским артезианским бассейном.

Гидрогеологическая область Байкальской рифто-вой зоны представляет собой одну из крупнейших рифтовых зон мира. Она включает систему грабенов, заложенных в неогене и продолжав-ших развиваться в четвертичное время. К ним приурочен ряд артези-анских бассейнов. Грабены ограничены системой молодых разломов, с, которыми связаны выходы многочисленных термальных источников (до 60 источников). Температура воды источников колеблется от 20 до -82~ С, расходы - от 1 до 85 л/с, минерализация редко достигает 1 г/л. Химический состав воды изменяется от гидрокарбонатно-сульфатного до сульфатно-хлоридного натриевого. Наиболее крупными и нагретыми источниками являются Могойский, Аллинский, Баунтовский, Хакусский, Питателевский, Котельниковский, Умхейский, Гаргинский, Горячинский и др.

К Селенгинскому, Тункинскому, Баргузинскому и другим межгор-ным артезианским бассейнам, в основном выполненным террйгенными отложениями неогена, приурочены пресные и солоноватые термальные воды. В Селенгинском бассейне из скважин с глубины 1800 - 2900 м самоизливались воды с дебитами до 3 л/с и температурой на устье 50 - 75~С. В Тункинском бассейне в зоне тектонического нарушения из сква-

жины с глубины 750 - 900 м получен самоизлив воды в количестве 2 - 8 л/с с температурой на устье 38 - 41~ С, с глубины 1500 - 1900 м расход при самоизливе уменьшился до 0,6 л/с. В Баргузинском бассейне из скважины с глубины 900 м дебит при самоизливе вод был небольшим, а температура составляла 22~ С.

В Саян о -Алтай с к о - Е ни сей с к ой гидрогеологиче-ской складчатой области в районе Западного и Восточного Саян, относящихся к области каледонской складчатости, имеется ряд азотных и углекислых термальных источников, выходящих вдоль круп-ных тектонических нарушений. Температура воды азотных источников наиболее высокая - от 40 до 83~ С (Тейрыс, Абаканский, Уш-Белдыр-ский), расходы - от 1 до 12 л/с. Последняя цифра относится к наиболее нагретому Уш-Белдырскому источнику, каптированному несколькими скважинами. Вода пресная, сульфатно-гидрокарбонатная натриевая.. Углекислые источники (Изиг-Суг, Хойто-Гол и др.) расположены вблизи четвертичного вулкана, температура воды от 30 до 42~ С, рас-ход до 17 л/с, минерализация до 2,5 г/л, по составу воды относятся к гидрокарбонатным натриевым.

На Алтае известно всего три термальных источника, самый круп-ный из них Белокурихинский. Скважинами глубиной до 525 м здесь выведены термальные воды с температурой до 42~ С, с суммарным де-битом скважин до 12 л/с. Воды пресные, сульфатно-гидрокарбонатные натриевые.

Межгорные бассейны Саяно-Алтайско-Енисейской области (Ми-нусинский, Тувинский, Рыбинский, Кузнецкий) выполнены в основном отложениями девона, карбона и перми (Тувинский, кроме того, поро-дами силура), содержат главным образом рассольные хлоридные нат-риевые термальные воды с минерализацией до 250 - 320 г/л; только к карбоновым.и нижнепермским отложениям Кузнецкого бассейна приурочены соленые воды. Опробование нефтеразведочных скважин глубиной до 2900 м показало низкие коллекторские свойства пород (в основном опробовались средне- и верхнедевонские водосодержа-щие отложения Минусинского бассейна и карбоновые с пермскими - в Кузнецком бассейне), вследствие чего расходы скважин при откач-ках достигали всего 0,5 - 1 л/с при понижениях уровня в несколько десятков метров. Наибольшая температура воды (80 - 82~ С) была от-мечена на глубине 2800 - 2850 м.

Прогнозные эксплуатационные ресурсы термальных вод

В соответствии с приведенной выше краткой характеристикой рас-пространения термальных вод на территории Советского Союза наме-чены перспективные районы (рис. 4), где термальные воды могут найти практическое применение, а в пределах этих районов выделены основ-ные водоносные комплексы с термальной водой и подсчитаны эксплуа-тационные ресурсы этих вод.

При выделении перспективных районов принимались во внимание следующие гидрогеотермические показатели: глубина залегания основ-ных водоносных комплексов с термальной водой, коллекторские свой-ства пород, температура, минерализация и состав воды. Кроме того, учитывались технико-экономические показатели, которые позволяют оценить экономическую эффективность использования термальных вод в народном хозяйстве.

Известно, что для использования термальных вод в качестве ис-точника тепловой энергии термальные воды должны обладать значительными эксплуатационными ресурсами (десятки и сот-ни литров в секунду), при этом чем ниже температура воды, тем большее количество ее требуется для покры-тия определенных тепловых нагрузок. При оценке пер-спектив использования термальных вод следует учиты-вать, что при строительстве геотермальных установок значительная доля капитальных затрат падает на буро-вые работы.

Наиболее перспективными следует считать те райо-ны, где наиболее высокий геотермический градиент, что позволяет вскрывать воды с достаточно высокой темпе-ратурой на сравнительно небольших глубинах, термаль-ные воды при вскрытии их скважинами дают самоизлив с достаточно большими дебитами и по составу и минера-лизации пригодны для эксплуатации.

Рис. 4. Карта перспектив использования термальных вод СССР. Составил Б. Ф. Маврицкий.

Перспективные районы использования термальных вод от пресных до соленых с температурой от 40 до 120~ С: 1 - в мезозойских отложениях артезианских бассейнов; 2 - то же, в отложениях мезозоя и кайнозоя; 3 - то же, в отложениях кайнозоя; 4 - районы с ограниченной перспективой использования термальных вод (с низкими тем-пературами - 20 - 40~ С или с рассольным характером минерализации высоконагретых вод); б - бесперспективные районы; 6 - районы с отсутствием термальных вод в оса-дочном чехле бассейнов. Перспективные районы использования термальных вод трещинных систем: 7 - современного вулканизма (температура 40 - 200~ С); 8 - вне райо-нов современного вулканизма (температура 40 - 100~ С). Районы: 9 - с ограниченными перспективами использования; 10 - бесперспективные; И - с невыясненными перспек-тивами: а - В пластовых системах, 6 - в трещинных системах. Площади с возможной производительностью водозаборов (в л/с): 12 - до 50; 13 - 50 - 100; 14 - 100 - 200; 15 - 200 - 300; 16 - более 300. Границы: 17 - районов с различной перспективностью; 18 - площадей с самоизливающимися водами; 19 - развития многолетнемерзлых по-род. Сплошные тонкие линии - геолого-структурные границы

Следует подчеркнуть, что наибольшие величины гео-термического градиента свойственны платформенным артезианским областям и межгорным артезианским бас-сейнам, выполненным мезо-кайнозойскими отложения-ми. В пределах этих структур геотермический градиент достигает 3~С на 100 м; а часто и более. Для платфор-менных артезианских областей и межгорных бассейнов, выполненных палеозойскими отложениями, величина геотермического градиента не выше 2,5~ С на 100 м, ча-сто меньше.

Таким образом, в пределах платформенных артези-анских областей и межгорных артезианских бассейнов перспективными следует считать районы, где величина геотермического градиента близка к 3~С на 100 м или больше 3~С на 100 м. Обычно в этих районах термаль-ные воды при вскрытии скважинами самоизливаются, в то время как в пределах древних платформ самоизлива не наблюдается.

При подсчете эксплуатационных ресурсов учитыва-лись термальные воды с минерализацией не выше 35 г/л.

Только после накопления достаточного опыта приме-нения минерализованных термальных вод будет начата эксплуатация месторождений с рассольными водами.

Приведенные выше соображения касались в основ-ном термальных вод пластового типа. Из числа районов, где развиты термальные воды трещинно-жильного типа, к перспективным следует отнести те, что характеризуют-ся интенсивными термопроявлениями, связанными с тек-тоническими движениями альпийского этапа.

Таким образом, среди перспективных районов по ус-ловиям залегания и циркуляции термальных вод выде-ляются две группы:

1) районы, расположенные в гидрогеологических складчатых областях, испытавших интенсивное воздей-ствие новейших тектонических движений и связанных с ними явлений вулканизма. Здесь термальные воды име-ют локальное развитие и относятся к трещинно-жильно-му типу;

2) районы эпипалеозойских платформенных артезианских обла-стей и межгорных артезианских бассейнов, выполненных мезо-кайно-зойскими осадками, с площадным распространением пластово-поровых и пластово-трещинных термальных вод.

К перспективным районам первой группы относятся районы со-временного вулканизма Камчатской и Курильской гидрогеологических складчатых областей, гидрогеологические складчатые области Тянь-Шаня, Байкала, Памира, Чукотско-Катазиатского вулканогенного по-яса и некоторые другие.

Из числа перспективных районов второй группы можно выделить следующие: на Западно-Сибирской платформенной артезианской об-ласти площади развития термальных вод к югу от 60~ с. ш. и особенно южнее Транссибирской железной дороги; на Туранской платформен-ной артезианской области - Бухаро-Каршинский гидрогеологический район, Сырдарьинский бассейн, систему бассейнов Кызылкумской-.зоны поднятий, отдельные участки в Мангышлакском и Устюртском райо-нах; на Скифской платформенной артезианской области - районы рав-нинной части Крыма и Предкавказья. Среди межгорных бассейнов сле-дует выделить Восточно-Черноморский (Рионский), отдельные участки Куринского, Ферганского и Таджикского бассейнов, Джаркентский, Се-ленгинский, Тункинский бассейны, артезианские бассейны о. Сахалина и некоторые другие.

В платформенных артезианских областях месторождения термаль-ных вод имеют столь большие размеры (тысячи и десятки тысяч квад-ратных километров), что в их пределах могут быть выделены эк-сплуатационные участки, характеризующиеся определенным геолого-структурным строением, гидрогеологическими условиями и технико-эко-номическими показателями. В некоторых районах из-за недостаточной их гидрогеотермической изученности трудно установить точные гра-ницы месторождений термальных вод. Это связано также с очень по-степенным изменением качественных показателей термальных вод и глубин их залегания (например, на площади Западно-Сибирской плат-форменной артезианской области).

В гидрогеологических складчатых областях месторождения тре-щинно-жильных термальных вод имеют четко выраженные границы и по размерам редко превышают 1 км2. Лишь некоторые месторождения в районах современного вулканизма занимают площади в несколько квадратных километров.

Типизация месторождений термальных вод по геолого-структур-ному признаку с учетом источников формирования их эксплуатцион-ных ресурсов приведена в гл. I. В этой типизации были выделены ме-сторождения артезианских бассейнов платформенного типа, межгор-ных впадин и месторождения кристаллических массивов складчатых областей, районов современного вулканизма. При этом два первых типа представляют пластовые, а два последних - трещинно-жильные место-рождения. Выявленные общие закономерности распространения и усло-вий залегания термальных вод на территории СССР позволяют по-дойти к разработке ряда более дробных типизации по параметрам, оп-ределяющим целесообразность освоения месторождений. К таким по-казателям относятся глубина, условия залегания, температура тер-мальных вод, возможные расходы водозаборов, минерализация вод, положение статического уровня.

По температуре все месторождения могут быть подразделены на слаботермальные (20 - 50~ С), термальные и высокотермальные (50 - 100~С) и с перегретыми водами (более 100~С).

По дебитам водозаборов месторождения могут быть подразделены на малодебитные (менее 50 л/с), среднедебитные (50 - 100 л/с) и высоко-дебитные (свыше 100 л/с). При этом для месторождений трещинно-жильного типа эти расходы будут соответствовать возможным эксплу-атационным запасам всего месторождения при самоизливе воды; на месторождениях пластового типа указанные величины соответствуют расходам стандартных водозаборов, расположенных на площади 25 км2, состоящих из пяти скважин, при понижении динамического уровня до 100 м ниже поверхности земли и расчетном сроке эксплуатации 10 тыс. сут.

По минерализации воды выделяются месторождения пресных вод (до 1 г/л), солоноватых (1 - 10 г/л) и соленых (10 - 35 г/л). Месторож-дения с рассольными термальными водами, как отмечено выше, отно-сятся к забалансовым.

По характеру самоизлива вод месторождения могут быть самоиз-ливающиеся не газирующие, самоизливающиеся газирущие и дающие из скважин извержение пароводяной смеси.

Наконец, по глубине залегания термальных вод месторождения мо-гут быть подразделены на ряд категорий. В пределах артезианских бас-сейнов платформенных и складчатых гидрогеологических областей можно выделить месторождения с водоносными комплексами, зале-гающими относительно неглубоко (до 1500 м), глубоко (от 1500 до 2500 - 3000 м) и на предельно допустимых по гидрогеотермическим и технико-экономическим показателям глубинах (от 2500 - 3000 до 3500 м). На месторождениях трещинно-жильного типа в гидрогеологи-ческих складчатых областях глубина залегания обычно колеблется от 150 до 200 м, реже до 300 м, в районах современного вулканизма она составляет до 500 м, реже больше.

Следует подчеркнуть, что наиболее распространенными месторожде-ниями как пластового, так и трещинно-жильного типов являются слабо-термальные и термальные. Месторождения с перегретыми водами (тем-пература воды свыше 100~ С) имеют практическое значение в основном в районах современного вулканизма (Камчатка, Курильские острова) и относятся к трещйнно-жильному типу. Месторождения с перегретыми водами пластового типа встречаются редко, лишь в пределах Предкав-казья и Рионской впадины. На таких месторождениях, как Кизлярское, Очемчирское, Прасковейское (на последнем минерализация вод намного превышает 35 г/л), скважинами глубокой свыше 3000 м выводятся воды и пароводяные смеси с температурой от 100 до 115~ С, редко до 120~ G.

Для определения практического значения термальных вод в народ-ном хозяйстве важно иметь представление об общих эксплуатационных ресурсах термальных вод и запасах тепла, заключенных в этих водах, в пределах выделенных перспективных районов.

Особенности методики региональной оценки эксплуатационных ре-сурсов термальных вод рассмотрены в гл.1. Результаты оценки ресур-сов перспективных районов в артезианских бассейнах платформенных и складчатых областей приведены в табл. 34.

К настоящему времени не для всех перечисленных районов удалось получить достаточно полные и надежные данные о прогнозных запасах термальных вод. Это объясняется главным образом неодинаковой изу-ченностью и неравномерной разбуренностью отдельных районов. Для ряда участков оказалось недостаточно фактических данных о коллектор-ских свойствах водоносных комплексов, по ним приняты расчетные вели-чины водопроводимости и пьезопроводности по аналогии с соседними, более изученными участками, находящимися в сходных геологических и гидрогеологических условиях. При ограниченной информации о гадродинамических параметрах водонапорных систем использованы схематизи-рованные данные. Все это определенным образом отразилось на полно-те и достоверности проведенных расчетов.

Таблица 34

Эксплуатационные ресурсы термальных вод пластового типа по отдельным районам СССР

Водоносный комплекс

Прог-нозные ресур-сы,

Темпера-тура тер-мальных вод, ~С

Прогнозные запасы тепла, млн. Гкал/год (при к.п.д. = 0,5)

Западно-Сибирская платформенная ар-тезианская область

Апт-альбсеноманский

Южные районы (к югу от 58~ с. ш.)

Неокомский

Северный район (к северу от

Апт-альб-сеноманский

Неокомский

Туранская платфор-менная артезидн-ская область

Сырдарьинский артезианский бассейн

Альб-сеноманский, нео-комский

Бухаро-Хивинский район Аму-дарьинского сложного арте-зианского бассейна

Альб-сеноманский

Артезианский бассейн Кы-зылкумской зоны поднятий

Южно-Мангышлакский и Се-веро-Устюртский сложные артезианские бассейны

Альб-сеноманский

Скифская платфор-менная артезиан-ская область

Северо-Крымский артезиан-ский бассейн

Азово-Кубанский артезиан-ский бассейн

Палеоген-неогеновые

Восточно-Предкавказский ар-тезианский бассейн

Палеогеновые, неоге-новые, меловые

Межгорные артезиан-ские бассейны

Восточно-Черноморский (Ри-онский), Алазанский

Неокомский, палеоге-новые, неогеновые

Куринский и Кусаро-Диви-ченский

Южно-Таджикский

Меловые, палеогено-вые, неогеновые

Ферганский

Неогеновые (частично меловой)

Джаркентский

От триасового до ме-лового возраста

Баргузинский, Селенгенский, Тункинский

Неогеновые

О. Сахалин

В основном неогено-вые

Примечания: 1. Кроме автора в подсчете прогнозных ресурсов принимали участие Г. К. Антоненко и И. С. Отман. 2. Запасы термальных вод с температурой 40 - 60~ С составляют 195 м3/с, с температурой 60 - 80~ С - 34 м3/с, с температурой 80 - 100~ С - 5 м3/с.

Как видно из табл. 34, выявленные эксплуатационные ресурсы тер-мальных вод месторождений пластового типа составляют около 235 м3/с, при этом более 75% приходится на Западно-Сибирскую артезианскую область. Основным источником формирования эксплуатационных ресур-сов на месторождениях пластового типа являются естественные (упру-гие) запасы, в межторных артезианских бассейнах определенное значе-ние имеют привлеченные естественные ресурсы. Модули эксплуатацион-ных ресурсов в различных перспективных районах изменяются от 0,05 до 0,2 л/с на 1 км2.

Как отмечено выше, эксплуатационные ресурсы термальных вод в горно-складчатых областях, подсчитаны по данным разведочных работ, а там, где поисково-разведочные работы не проводились, они опреде-лены по величине естественной разгрузки термальных вод с учетом коэф-фициента увеличения расходов при разбуривании. Этот коэффициент принимался равным 2 - 3, т. е. минимальным из получаемых на практике при проведении разведочных работ!

Как показали данные разведки многочисленных месторождений тер-мальных вод трещинно-жильного типа, естественная рагрузка этих вод, как правило, во много раз (до 10 - 20 раз и более) меньше запасов тер-мальных вод, которые выявляются пр,и проведении разведочных работ (Горячинок, Кульдур, Исти-Су, Паужетка, Паратунка и многие другие месторождения). Температура воды на глубине выше, чем на выходе источников.

Таблица 35

Эксплуатационные ресурсы термальных вод трещинно-жильного типа по перспективным районам

Прогнозные ресурсы

Темпера-тура вод,

Запасы тепла, млн. Гкал/год (при

к. п. д.=0,5)

парогидро-

Камчатская гидрогеологическая складчатая

Курильская гидрогеологическая складчатая

Байкальская гидрогеологическая складча-

Складчатая гидрогеологическая зона Тянь-

Складчатые гидрогеологические зоны Боль-

шого и Малого Кавказа, Талыша, Пами-

ра, Саян, Приамурья, Чукотки, района

вулканогенного пояса

Данные расчета эксплуатационных ресурсов термальных вод горно-складчатых областей (месторождений трещинно-жильного типа) сведены в табл. 35 (по Камчатке при подсчете ресурсов парогидротерм были ис-пользованы материалы Института вулканологии СО АН СССР). Как следует из этой таблицы, выявленные прогнозные эксплуатационные ре-сурсы термальных вод горно-складчатых областей составляют всего 7 м3/с, а парогидротерм - 5 т/с. Из сопоставления данных табл. 34 и 35 следует, что прогнозные эксплуатационные ресурсы термальных вод пластового типа во много раз превышают ресурсы термальных вод тре-щинно-жильного типа. Это определяет основное практическое значение того и другого типов месторождений и методику проведения геологораз-ведочных работ на термальные воды.

В таблицах 36 и 37 приведены возможные дебиты групповых водо-заборов на месторождениях пластового и трещинно-жильного типов. Эти данные более четко определяют возможные масштабы использова-ния термальных вод для различных целей.

На основе приведенных в табл. 36 данных о возможных расходах водозаборов и температуре воды оценена прогнозная теплопроизводи-тельность водозаборов на месторождениях термальных вод пластового типа. Результаты определений сведены в табл. 38.

Теплопроизводительность месторождений термальных вод трещинно-жильного типа с температурой вод до 100~ С может колебаться от 1 до 70 - 75 Гкал/ч. Таким образом, теплопроизводительность водозабо-ров термальных вод на месторождениях пластового и трещинно-жиль-ного типов в перспективных районах имеет диапазон от 1 до 75 Гкал/ч. Только на месторождениях парогидротерм в районах современного вул-канизма теплопроизводительность водозаборов может составлять сотни гигакалорий в час, и на базе таких месторождений могут работать элек-тростанции мощностью в тысячи и десятки тысяч киловатт.

Выявленные эксплуатационные ресурсы термальных вод имеют различную ценность с точки зрения их практического освоения и могут быть подразделены на две категории: ресурсы первоочередного освоения и ресурсы более отдаленной перспективы освоения.

Первая категория ресурсов должна удовлетворять ряду показателей, из которых основными являются: 1) достаточно высокая водопрово-димость коллекторов (от 30 - 50 м2/сут и более), обеспечивающая высо-кие расходы водозаборов; 2) температура воды на изллве выше 40~ С;

3) относительно невысокая минерализация воды (не более Юг/л);

4) отсутствие или незначительное солеотложение в трубопроводах при эксплуатации; 5) низкая коррозионная активность воды.

Термальные воды, .удовлетворяющие перечисленным показателям, при их практическом использовании, как правило, не будут требовать применения водотеплоойменных устройств и решения специальных во-просов сброса и захоронения отработанных термальных вод, что повысит экономическую эффективность эксплуатации таких вод.

Из общих прогнозных запасов термальных вод, составляющих около 250 м3/с, указанным требованиям удовлетворяют запасы, определяемые в 80 м3/с. Из этого количества более 70 м3/с составляют термальные воды пластового типа, развитые, как правило, на уже обжитых площа-дях или в интенсивно осваиваемых районах.

Примерное распределение запасов первой очереди освоения по от-дельным районам дано в табл. 39.

Из числа указанных в табл. 36 месторождений термальных вод пла-стового типа по возможным расходам водозаборов, температуре воды на изливе и ее минерализации могут быть рекомендованы для первооче-редного освоения месторождения Предкавказья, Очамчирское, Мегрель-ское (Зугдидское). Из числа месторождений трещинно-жильного типа (табл. 37) в первую очередь должны быть освоены наиболее крупные ме-сторождения парогидротерм Камчатки и Курильских островов (Семя-чинско-Узонское, Мутновско-Жировское, Кошелевское, Паужетское, Киреунокое, Горячий Пляж и др.)- Большую практическую ценность имеют и другие месторождения термальных вод трещинно-жильного типа, на-пример Байкальской рифтовой зоны.

В настоящее время ГКЗ СССР по сумме всех категорий утверждены эксплуатационные запасы термальных вод и парогидротерм по 15 место-рождениям и участкам, находящимся в Грузии (семь участков), Север-ном Кавказе (четыре участка), на Камчатке (четыре участка), немногим более 3 м3/с термальных вод и 0,25 т/с парогидротерм. Таким обра-зом, степень изученности выявленных прогнозных ресурсов составляет всего около 1,5%.

На базе разведанных запасов ларогадротерм построена и работает Паужетская ГеоТЭС мощностью до 5 МВт и намечается строительство Южно-Курильской ГеоТЭС. Термальные воды используются для отопле-ния, горячего водоснабжения и хозяйственно-бытовых нужд в ряде горо-дов, сельских поселков, курортов. Термальными водами отапливаются Паратунское, Ханкальское, Тернаирекое; Охурейское и другие теплично-парниковые хозяйства общей площадью свыше 20 га.

Для более широкого применения термальных вод в народном хо-зяйстве требуется широкое развитие геологоразведочных работ. Следует ускорить проведение разведочных работ на Камчатке, где освоение теп-ла, заключенного в термальных водах и парогидротермах, может стать основой энергетики и теплоснабжения этого удаленного района и позво-лит обходиться без привоза дорогостоящего топлива. Разведочные ра-боты должны быть усилены в Предкавказье, в Грузинской ССР, в юж-ных районах Западной Сибири и ряде районов Узбекистана и Казах-стана. В полупустынных районах равнинной части Узбекистана, Ман-гышлака и Устюрта термальные воды уже находят и в дальнейшем най-дут еще большее практическое применение. В этих районах, ощуща-ющих недостаток в питьевой и технической воде, термальные воды по качеству относятся к питьевым или близки к «им, поэтому использова-ние их уменьшит водный дефицит. На базе термальных вод можно орга-низовать горячее водоснабжение, сеть бальнеолечебшщ, построить бани, прачечные, плавательные бассейны, теплично-парниковые хозяйства и др.

Технико-экономические расчеты, выполненные ЦНИИЭП инженер-ного оборудования Госгражданстроя СССР (Локшин, 1969) по ряду ос-ваиваемых объектов (Махач-Кала, Ханкала, Зугдиди, Цаиши, Черкесск, Тобольск и др.), показали достаточно быструю окупаемость капиталь-ных затрат на строительство объектов отопления, горячего водоснабже-ния на базе термальных вод. В зависимости от размеров геотермального объекта годовая прибыль составляет от 100 до 500 тыс. руб., экономятся десятки тысяч тонн угля и миллионы кубических метров водопроводной воды в год. Сроки окупаемости капиталовложений обычно не превы-шают пяти лет. .

Зарубежный и отечественный опыт использования термальных вод показывает, что чем многообразнее и на более совершенном техническом уровне утилизируются все полезные свойства воды, тем выше экономи-ческая эффективность эксплуатации данных месторождений.

Таблица 36

Гидрогеотермическая характеристика типичных месторождений термальных вод пластового типа

Месторождение

Основные водоносные комплексы с термальной водой

Ориентиро-вочная глуби-на скважин, м

Водопрово-димость, м2/сут

Избыточные напоры, м

Температура, ~С

Минерали-зация,

Расчетные расходы стандартных водозаборов,

Западно-Сибирская артезианская платформенная область

Колпашевское

Неокомский и апт-сеноманский

Барабинско-Купинское

Омско-Тарское

Тобольское

Неокомский

Тюменское

Сургутское

Неокомский и апт-сеноманский

Туранская артезианская платформенная область Равнинная часть Узбекистана

Ташкентское

Альб-сеноманский

Бухарское

К аршин с кое

Мангышлак и Устюрт

Шевченковское

Альб-сеноманский

Тенгинское

Тигенское

Скифская артезианская платформенная область Равнинный Крым

Сакско-Евпаторийское

Неокомский

Белогорское

Джанкойское

Дат-эоценов ый

Предкавказье

Майкопское

Меловой и третичный

Черкесское

Альб-сеноманский

Нальчикское

Грозненское

Чокрак-караганский

Моздокское

Прохладненское

Махач-Кал инское

Кизлярское

Артезианские бассейны межгорных впадин Восточно-Черноморский (Рионский) артезианский бассейн

Мегрельское.

Heoкомский

Очамчирское

Куринский а

зтезианский С

Кировобадское

Майкопский, акчагыльский, апшеронский

Джаркентский артезианский бассейн

Панфиловское

Меловой, частично юрский и триасовый

Артезианские бассейны о. Сахалин

Северо-Сахалинское

Неогеновый

Паронайское

* За стандартный принят водозабор площадью 25 км2, состоящий из пяти скважин. Подсчет расходов проведен по формуле большого колодца исходя из условий: расчетное понижение равно избыточному; полюс понижения на 100 м ниже поверхности земли; коэффициент пьезопроводности - 105 м2/сут, расчетный период эксплуата-ции - 10 тыс. сут, радиус большого колодца - 400 м

Таблица З7

Характеристика основных месторождений термальных вод трещинно-жильного типа

Район, месторождение

Ориенти-ровочная глубина скважин, м

Минера-лизация, г/л

Темпера-тура, ~С

Разведанные и прогнозные запасы, л/с (для паро-гидротерм, кг/с)

Талыш, Алашинское

Тянь-Шань, Иссык-Атинское

Памир, Джиландинское

Саяны, Уш-Бельдырское

Байкальская система

Могойское

Питателевское

Горячинское

Аллинское

Сейюйское

Буреинский массив, Кульдурское

Чукотско-Охотский сектор вулканогенного

пояса, Чаплинское

Таватумское

Тальское

Камчатка

Паланское

Киреунское

Семячинско-Узонское

Паужетское

Кошелевское

Больше-Банное

Мутновско-Жировское

Паратунское

Налычевское

Малкинское

Эссовское

Курилы, Горячий Пляж

* Месторождения разведанные.

** Месторождения разведуемые.

Широкое развитие гелогоразведочных работ на термальные воды диктуется значительными потребностями тепла в пределах вышеуказан-ных перспективных районов. Эти потребности, по данным института «Теплоэлектропроект» и НИИ овощного хозяйства, составляют для ком-мунально-бытовых нужд и сельского хозяйства более 120 млн. Гкал/лод, а к 1980 г. возрастут примерно до 150 млн. Ткал/год. Если принять, что лишь 50% теплового потенциала термальных вод будет полезно использовано, то и в этом случае за счет термальных вод можно покрыть зна-чительную часть указанной потребности в тепле.

Для использования глубинного тепла Земли в промышленных мас-штабах должны быть значительно расширены против современного уровня разведочные работы на выявленных месторождениях термальных вод, отнесенных к категории первоочередного освоения. Одновременно с рас-ширением разведочных работ необходимо планировать строительство объектов теплоснабжения на разведанных запасах термальных вод.

Таблица 38

Возможная теплопроизводительность водозаборов на месторождениях пластового типа

Примечание. При расчетах коэффициент полезного использования тепла принят рав-ным 0,5.

Таблица 39

Распределение по районам прогнозных запасов термальных вод первоочередного освоения

Возраст водовмещающих пород

Мине-рали-зация, г/л

Темпера-тура воды, ~С

Прогнозные запасы

тепла, млн Гкал/год (к. п. д.=0,5)

Термальные воды пластового типа

Западная Сибирь (Ново-сибирская, Омская, Павлодарская области,

Алтайский край)

Альб-сеноман и неоком

Сырдарьинский (Кзыл-Ординская, Ташкент-ская, Чимкентская об-

Альб-сеноман

Бухаро-Хивинский

Кзыл-Кумский

Южно-Мангышлакский и Северо-Устюртский

Альб-сеноман

Равнинный Крым

Западное Предкавказье (Краснодарский край)

Мел, палеоген, неоген

Центральное Предкав-казье (Ставропольский край)

Восточное Предкавказье (Ставропольский край, Дагестанская, Кабар-дино-Балкарская и Че-чено-Ингушская авто-номные республики)

Мел, палеоген, неоген

Рионский (Грузинская

Алазанский

Куринский (Кировобад-ская обл.)

Неоген, мел

Ферганский

Джаркентский (Алма-Атинская и Талды-Курганская области, Казахская ССР)

От триаса до мела

Селенгинский (Бурятская АССР)

Сахалинский

Термальные воды трещинно-жильного типа

Камчатка

Курильские острова

Прибайкальский (Бурят-ская АССР)

Промышленные - воды, содержащие некоторые компоненты в концентрациях, позволяющих их извлекать для промышленных целей. Залегают они на глубинах более 500м, занимают небольшие площади. Для них характерны йод, бром, бор, литий, германий, медь, цинк, алюминий и вольфрам.

Минеральные - воды, оказывают благотворное физиологическое влияние на человеческий организм в силу общей минерализации, ионного состава, содержания газов и активных компонентов. Их минерализация превышающей 1 г/л (солоноватые – до 10 г/л, соленые – 10-35 г/л, рассолы – свыше 35 г/л). Встречаются лечебные воды с минерализацией до 1 г/л с высоким содержанием специфических биологически активных компонентов. Минеральные воды делят на холодные (до 20С), теплые (20-37С), термальные (37-42С), горячие (свыше 42С). Они делятся также на железистые, мышьяковистые, сероводородные, углекислые, радоновые, йодные, бромные. Провинции углекислых вод приурочены к областям альпийской складчатости (Кавказ, Памир, Камчатка и др.), хлоридных – к глубоким частям крупных артезианских бассейнов.

2.8 Физические свойства и химический состав подземных вод

Простейшую формулу Н 2 О имеет молекула парообразной влаги – гидроль; молекула воды в жидком состоянии (Н 2 О) 2 дигидроль; в твердом состоянии (Н 2 О) 3 –тригидроль.

Изучение физических свойств и химического состава подземных вод необходимо для оценки их качества для питьевых и промышленно-хозяйственных целей, выяснения условий питания, происхождения, и при выборе материала для крепления горных выработок и подборе шахтного оборудования.

Основные физические свойства подземных вод - температура, прозрачность, цвет, запах, плотность, радиоактивность.

Температура подземных вод изменяется в широких пределах: в областях вечной мерзлоты она до -6С, в районах вулканической деятельности – более 100С.

По температуре воды делятся на весьма холодные – до +4С; холодные – 4-20С; теплые – 20-37С; горячие –37-42С; весьма горячие – 42-100С. Температура воды сильно влияет на скорость протекания физико-химических процессов.

Температура неглубоко залегающих подземных вод +5 - +15С, глубоко погруженных вод артезианских бассейнов - +40- +50С; на глубине 3-4 км вскрыты воды с температурой более 150С.

Прозрачность воды зависит от наличия минеральных солей, механических примесей, коллоидов и органических веществ. Подземные воды прозрачные, если в слое 30 см не содержат взвешенных частиц.

Цвет вод зависит от химического состава и наличия примесей. Обычно подземные воды бесцветны. Жесткие воды имеют голубоватый оттенок, закисные соли железа и сероводород придают воде зеленовато-голубую окраску, органические гуминовые кислоты окрашивают воду в желтый цвет, а воды, содержащие соединения марганца – черные.


Запах подземных вод отсутствует. Специфический запах может быть обусловлен присутствием соединений сероводорода, гуминовых кислот, органических соединений, образующихся при разложения животных и растительных остатков. Для определения запаха воду подогревают до 50-60С.

Вкус воды зависит от присутствия в ней растворенных минеральных веществ, газов и примесей. Хлористый натрий придает воде соленый вкус, сернокислые соли натрия и магния – горький, азотистые соединения – сладковатый, а свободная углекислота – освежающий. При определении вкуса воду подогревают до 30С.

Плотность воды обусловлена растворенными в ней солями, газами, взвесями и температурой.

Радиоактивность обусловлена присутствием природных радиоактивных элементов: урана, радона, радия, продуктов их распада – гелия, их формирование определяется геологическими, гидрогеологическими и геохимическими факторами.

Из-за наличия трех изотопов водорода – 1 Н (протий), D (дейтерий), Т (тритий) и шести изотопов кислорода 14 О, 15 О, 16 O, 17 O, 18 O, 19 O имеются 36 изотопных разновидностей воды, из которых только девять стабильные.

Соединение D 2 O называется тяжелой водой, содержание которой в природе составляет 0,02.

Изучение состава и свойств подземных вод производится на всех стадиях разведки, а также в процессе вскрытия и эксплуатации месторождений.

Исследование состава подземных вод преследует основные цели:

Выяснение их пригодности для хозяйственно-питьевого и технического водоснабжения;

Оценка возможного вредного влияния вод на бетонные и металлические конструкции шахт и горное оборудование.

Химический состав подземных вод позволяет судить также об особенностях формирования и питания подземных вод, взаимосвязи водоносных горизонтов.

Химический состав подземных вод определяется количеством и соотношением содержащихся в них ионов (минерализацией воды), жесткостью, количеством и составом растворенных и нерастворенных в воде газов, реакцией воды (рН), агрессивностью и пр.

Главнейшими химическими компонентами подземных вод - катионы – Na + , K + , Ca 2+ , Mg 2+ , анионы – HCO 3 - , Cl - , SO 4 2- , микрокомпоненты – Fe 2+ , Fe 3+ , Al 3+ , Mn 2+ , Cu 2+ , Zn 2+ , Br, I, N, газы – N 2 , O 2 , CO 2 , CH 4 , H 2 , комплексные органические соединения – фенолы, битум, гумус, углеводороды органические кислоты.

Химический состав подземных вод выражают в ионной форме в мг/л и г/л.

Главные источники этих компонентов - горные породы, газы атмосферы, поверхностные воды и геохимические условия, которые сложились в пределах площади распространения.

По минерализации подземные воды могут быть пресными, с минерализацией до 1 г/л, слабосолоноватыми – 1-3 г/л: солеными – 3-10 г/л, очень солеными – 10-50 г/л и рассолами – более 50 г/л.

Жесткость воды (Н) – свойство воды, обусловленное присутствием в ней солей кальция и магния. Выражается жесткость в мг. экв/л. Различают жесткость общую, временную и постоянную.

Общая жесткость оценивается содержанием солей Са 2+ и Mg 2+ в виде Ca(HCO 3) 2 , Mg(HCO 3) 2 , CaSO 4 , MgSO 4 , CaCl 2 , MgCl 2 и вычисляется суммированием этих ионов в мг. экв/л.

где значения Са 2+ и Mg 2+ приведены в мг/л;

20,04 и 12,16 – эквивалентные массы кальций-иона и магний- иона.

Временная жесткость обусловлена гидрокарбонатными и карбонатными солями Са 2+ и Mg 2+: (Ca(HCO 3) 2 , Mg(HCO 3) 2 , CaCO 3 иMgCO 3).

Временная жесткость:

, (2.6)

где значение HCO 3 - берется в мг/л, 61,018 – его эквивалентная масса.

Постоянная жесткости обусловлены хлоридами, сульфатами и некарбонатными солями кальция и магния. Определяется как разность между общей и временной жесткостью:

Н пост. = Н общ. – Н вр. (2.7)

Выражается жесткость в мг. экв./л Ca 2+ и Mg 2+ в 1 мг. экв./л жесткости.

Природные воды подразделяются по степени жесткости на пять групп (мг. экв./л): очень мягкие – до 1,5; мягкие – 1,5-3; умеренно жесткие – 3,0-6,0; жесткие – 6,0-9; очень жесткие – 9,0.

Щелочность обусловлена наличием в воде щелочей Na + - NaOH, Na 2 CO 3 и NaHCO 3 . 1 мг. экв./л щелочности соответствует 40 мг/л NaOH; 53 мг/л NaCO 3 и 84,22 мг/л NaHCO 3 .

Активная реакция воды – степень ее кислотности или щелочности, характеризующаяся концентрацией водородных ионов рН (десятичный логарифм концентрации ионов водорода, взятый с положительным знаком): очень кислые - 5; кислые – 5-7; нейтральные – 7; щелочные – 7-9; высоко щелочные 9.

Агрессивность воды – способность разрушать бетон, железобетонные и металлические конструкции. Различают сульфатную, углекислую, выщелачивания магнезиальную и общекислотную виды агрессии.

Сульфатная агрессия определяется повышенным содержанием иона SO 4 2- . При избытке иона SO 4 2- происходит кристаллизация в бетоне новых соединений: образуется гипс CaSO 4 . 2H 2 O с увеличением объема на 100 % и сульфоалюминат кальция (бетонная бацилла) с увеличением объема в 2,5 раза, что приводит к разрушению бетона. Вода агрессивна к бетону при содержании иона SO 4 2- - свыше 250 мг/л.

Углекислая агрессивность. При воздействии угольной кислоты происходит растворение и вынос из бетона CaCO 3 - . При избытке СО 2 наблюдается переход СаСО 3 в Са(НСО 3) 2 , который легко растворяется и выносится из бетона.

Избыток СО 2 20 мг/л называется агрессивной углекислотой.

Агрессивность выщелачивания происходит за счет растворения и вымывания из бетона извести СаСО 3 при дефиците в воде иона НСО 3 - . Воды, содержащие менее 30 мг/л связанной углекислоты и жесткостью до 1,4 мг/л агрессивные.

Магнезиальная агрессивность приводит к разрушению бетона при повышенном содержании Mg 2+ . В зависимости от сорта цемента, условий и конструкции сооружения, иона SO 4 2- , более 250 мг/л, предельно допустимое количество ионов Mg 2+ 750-1000 мг/л.

Общекислотная агрессивность зависит от концентрации водородных ионов рН. Вода обладает коррозирующими свойствами при рН 6,5.

2.9 Формирование химического состава подземных и шахтных вод

Подземные воды постоянно взаимодействуют с атмосферными водами и горными породами. В результате происходит растворение и выщелачивание горных пород, особенно карбонатов, сульфатов, галоидов. Если в воде присутствует углекислота, происходит разложение нерастворимых в воде силикатов по следующей схеме:

Na 2 Al 2 Si 6 O 16 + 2H 2 O + CO 2 NaCO 3 + H 2 Al 2 Si 2 O 8 (2.8)

В результате в воде накапливаются карбонаты и гидрокарбонаты натрия, магния, кальция. Распространение их подчиняется общей гидрохимической зональности. Вертикальную гидрохимическую зональность определяют геологические условия формирования подземных вод, связанные с особенностями состава, строения и свойств горных пород.

В вертикальном разрезе земной коры выделяют три гидродинамические зоны :

а) верхняя – интенсивность водообмена, мощностью от десятков до нескольких сотен метров. Здесь подземные воды находятся под влиянием современных экзогенных факторов. По составу – гидрокарбонатные кальциевые маломинерализованные воды. Водообмен исчисляется годами и столетиями (в среднем 330 лет);

б) средняя – замедленного водообмена. Глубина зоны изменчива (примерно 3-4 км). Скорость движения подземных вод и их дренаж уменьшается. На состав вод этой зоны оказывают влияние вековые изменения экзогенных условий. Воды натриевые, сульфатно-натриевые или сульфатно-натриево-кальциевые. Водообмен длится десятки и сотни тысяч лет;

в) нижняя – весьма замедленного водообмена. Экзогенные условия здесь не оказывают никакого влияния. Приурочены обычно к глубоким частям впадин. Распространены на глубинах более 1200 м и более. Воды высокоминерализованные, по составу хлоридные кальциево-натриевые и хлоридно-магниево-натриевые. Возобновление подземных вод составляет миллионы лет.

Соответственно гидродинамическим выделяются гидрохимические зоны. Гидрохимическая зона - часть артезианского бассейна, относительно однородная по гидрохимическому строению;

г) верхняя – пресных вод с минерализацией до 1 г/л мощностью 0,3-0,6 м;

д) промежуточная, солоноватых и соленых вод с минерализацией 1-35 г/л;

е) нижняя – рассолов (более 35 г/л).

На формирование химического состава подземных вод месторождений твердых полезных ископаемых существенно влияют окислительные и восстановительные условия, которые складываются в процессе горных работ.

Для угольных месторождений характерны два типа природной обстановки: в верхних частях – окислительная, на глубоких – восстановительная.

При отработке угля искусственно создаётся окислительная обстановка, в которую попадают подземные воды, нарушается ход естественных химических процессов.

В более глубоких горизонтах воды насыщены более стойкими соединениями (NaCl, Na 2 SO 4), малоактивны и устойчивы к окружающей среде.

По мере их передвижения по выработкам, в воде увеличивается содержание Ca 2+ , Mg 2+ и SO 4 - , повышается жесткость и минерализация. В меньшей степени возрастает содержание Na + , Cl - , Al 2 O 3 , SiO 2 , Fe 2 O 3 .

При уменьшении рН иногда исчезает СО 3 2- и появляется НСО 3 - . Содержание СО 2 и О 2 изменяется в зависимости от обстановки.

Наибольшие изменения претерпевают подземные воды, поступающие в виде капежей, особенно в очистных выработках. Кислые воды образуются только на верхних горизонтах, куда поступают подземные воды низкой минерализации и обладающие меньшей щелочностью. Обычно кислые воды формируются в старых заброшенных выработках.

Кислые воды являются хорошими растворителями, вследствие чего минерализация их быстро повышается по мере протекания по выработкам.

Зона возможного образования кислых вод охватывает подземные воды, где в составе их сильные кислоты преобладают над щелочами. Нижняя граница совпадает с верхней границей метановой зоны (примерно глубина 150 м) и с верхней границей – распространения натриевых. Максимальные мощности зоны возможного образования кислых вод 350-400 м.

Шахтные воды агрессивны, в верхних частях обладают сульфатной, в нижней – агрессивностью выщелачивания.

2.10 Режим подземных вод - совокупность изменений во времени уровня, напора, расхода, химического и газового состава, температурных условий, скорости движения подземных вод.

Изменение режима подземных вод происходит под влиянием природных (климатических и структурных) факторов и техногенной деятельности человека. Особенно резкие изменения их режима наблюдаются в горнодобывающих районах. Водоотливы из горных выработок уменьшают напоры подземных вод, а иногда полностью осушают водоносные пласты, нарушая природный режим подземных вод. Горные выработки или дренажные системы повышают коэффициент водообмена, возникающие деформации поверхности способствуют увеличению подземного стока; отмечается взаимосвязь водоносных горизонтов и с поверхностными водами.

В одних условиях количество откачиваемых шахтных вод может компенсироваться естественным притоком подземных вод, в других – интенсивный приток в горные выработки приводит к истощению ресурсов подземных вод шахтного поля или месторождения.

При эксплуатации глубоких горизонтов в соответствующих геологических условиях происходит обычно изменение притока шахтных вод с глубиной, не зависящее от их ресурсов.

Для условий Донбасса наибольшая водообильность наблюдается на глубинах 150-200 м, ниже 300-500 м водопритоки уменьшаются. При горизонтальном залегании пластов и приуроченности водоносных горизонтов к пористым породам притоки шахтных вод в паводковые периоды не превышают 20-25 %. Наклонное залегание пород способствует сезонному увеличению паводковых вод на 50, 100 % и больше. Особенно резкие колебания наблюдаются при наличии карстующихся пород с увеличением притока до 300-400 %.

Нарушения естественного режима подземных вод возникает уже в самом начале шахтного строительства, при проходке стволов.

Вскрываются многие водоносные горизонты каменноугольных отложений до глубин 500-600 м, а при закладке глубоких шахт – до 1000-1200 м. Но поскольку крепление стволов осуществляется вслед за углубкой, притоки в них незначительные и составляют 10-20 м 3 /час, в отдельных районах (Красноармейский) до 70-100 м 3 /час. Поэтому вокруг шахтных стволов не наблюдается широких депрессий и в зону осушения попадают незначительные площади.

Дальнейший дренаж подземных вод происходит при проведении подготовительных выработок, особенно квершлагов, вскрывающих по несколько водоносных горизонтов, но притоки не превышают 10-15 м 3 /час. Интенсивное осушение наблюдается при очистных работах, при обрушении и оседании пород над выработанным пространством. Сопровождается образованием трещин, связывающих разобщенные до этого водоносные горизонты, залегающие над разрабатываемыми пластами в пределах 30-50-кратной мощности угольного пласта.

В дальнейшем происходит задавливание трещин обрушения и уменьшение их водопроницаемости, приток в лаву на этом участке будет уменьшаться или полностью прекратится и уровни подземных вод восстанавливаются до уровней поверхности общей шахтной депрессии. Формирующиеся над очистными выработками депрессионные воронки являются временными, мигрируют по площади отработки вслед за перемещением забоя лавы.

При неглубоком залегании пласта полезного ископаемого зона водопроводящих трещин может достигать земной поверхности и водопритоки в шахту будут формироваться за счет просачивания атмосферных осадков по площади очистных работ.

При вскрытии тектонических нарушений притоки составляют 300-400 и более м 3 /час, иногда 1000 м 3 /час.

В результате подработки горными работами водоносных горизонтов имеют место отдельные случаи вывода из строя водозаборов подземных вод.

2.11 Происхождение подземных вод .

1) инфильтрационные подземные воды – образуются в результате просачивания в водопроницаемые породы атмосферных осадков. Иногда наблюдается поступление воды в водоносные горизонты из рек, озер и морей. Можно считать инфильтрацию основным источником пополнения подземных вод, распространенными в верхних горизонтах с интенсивным водообменом.

2) конденсационные подземные воды. В засушливых районах большую роль в формировании водоносных горизонтов играет конденсация водяных паров воздуха в порах и трещинах горных пород, возникающая за счет разности упругости водяных паров атмосферного и почвенного воздуха. В результате конденсации в пустынях образуются линзы пресных вод над солеными грунтовыми водами.

3) седиментогенные подземные воды – воды морского происхождения. Они образовались одновременно с накоплением осадков. В ходе последующего тектонического развития такие воды изменяются при диагенезе, тектонических движений, попадая в зоны повышенных давлений и температур. Большую роль в формировании седиментогенных вод отводят элизионным процессам (элизио – обжимаю). Первичные осадки содержат до 80-90 % воды, при уплотнении которых происходит их отжим. Естественная влажность горных пород 8-10 %.

4) ювенильные (магматогенные) подземные воды образованы из паров, выделяющихся из магмы при ее остывании. Попадая в области более низких температур пары магмы конденсируются и переходят в капельно-жидкое состояние, создавая особый тип подземных вод. Такие воды обладают повышенной температурой и содержат в растворенном состоянии необычные для поверхностных условий соединения и газовые компоненты. Приурочены к областям современной вулканической деятельности. Вблизи поверхности такие воды смешиваются с обычными подземными водами.

5) возрожденные (д егидратационные) воды образуются при выделении ее из минеральных масс, содержащих кристаллизационную воду. Такой процесс возможен при повышенных температурах и давлениях.

Контрольные вопросы

1. Назовите основные задачи и разделы гидрогеологии и инженерной геологии.

Охарактеризуйте круговорот воды в природе.

Назовите основные виды воды в горных породах.

Назовите основные водно-физические свойства подземных вод.

Охарактеризуйте типы подземных вод по условиям залегания и основные их особенности.

Назовите физические свойства подземных вод.

Какие основные параметры определяются при химическом составе подземных вод.

Сформулируйте понятие режим подземных вод. Как изменяется режим шахтных вод?

Охарактеризуйте типы подземных вод по происхождению.

Минеральные воды, распространенные на территории нашей страны, весьма разнообразны по качеству. Тесная связь, существующая между химическим составом воды, составом пород и гидрологическими условиями, позволяет разбить их на три большие группы. Чаще всего встречаются воды третьей группы: соленые сильно минерализованные воды. Минеральные воды терапевтического значения имеют умеренную минерализацию в пределах концентраций питьевой воды. Минеральные воды для ванн имеют повышенную минерализацию до 120-150 г/кг.

Основная масса лечебных минеральных вод приурочена к артезианским и адартезианским бассейнам. В верхнем этаже этих структур в областях суши в условиях гумидного климата широко развиты воды без «специфических» компонентов сульфатного и хлоридного состава, реже железистые, радоновые, сероводородные и иногда типа «нафтуся» с высоким содержанием органических веществ. В областях с аридным климатом (Прикаспийская низменность и др.) в верхнем этаже этих структур развиты в основном соленые хлоридно-сульфатные воды без «специфических» компонентов.

В нижнем этаже артезианских и адартезианских бассейнов с галогенными формациями повсеместно распространены бромистые, местами йодистые, сероводородные, радоновые воды.

В гидрогеологических массивах и адмассивах в областях, не охваченных активизацией (с относительно слаборасчлененным рельефом), широко распространены радоновые, а также железистые минеральные лечебные воды. В активизированных областях в этих структурах также развиты кремнистые термы, местами радоновые и сероводородные, реже бромистые и йодистые.

В областях молодого и современного в разных типах структур формируются углекислые лечебные воды различных ионно-солевого состава и минерализации. Среди них выделяются железистые, мышьяковистые, бромистые, йодистые, сероводородные, борные и другие разновидности.
Потенциальные ресурсы лечебных минеральных вод России весьма велики. В пределах артезианских бассейнов платформ (Восточно-Европейской и др.) широко распространены минеральные воды без «специфических» компонентов: бромистых, йодистых, а также сероводородных, кремнистых и др. Модули потенциальных ресурсов составляют от 1 до 50 м3/сут-км2. В этих регионах дебиты скважин с минеральными водами достигают часто 500-600 м3/сут., что обеспечивает потребности санаторно-оздоровительных учреждений.

Суммарные потенциальные ресурсы углекислых вод составляют 148 тыс. м3/сут., из них третья часть (50 тыс. м3/сут) находится в Кавказском регионе. Потенциальные ресурсы азотных терм - 517 тыс. м3/сут - в основном сосредоточены в Курило-Камчатской складчатой области.

Промышленные минеральные воды в основном распространены в артезианских (и адартезианских) бассейнах, где представлены бромными, йодными, йод-бромными, борными и поликомпонентными (К, Sr, Li, Rb, Cs) жидкими рудами.

К зоне соленых вод во многих артезианских бассейнах приурочены значительные ресурсы йодных вод. Особенно велики они в бассейнах Западно-Сибирской плиты (1450 тыс. м3/сут).
С рассолами с минерализацией до 140 г/кг почти повсеместно связаны бромные или йод-бромные промышленные воды. С крепкими и сверхкрепкими рассолами (от 270 до 400 г/кг) во многих бассейнах связаны поликомпонентные промышленные воды, с очень высокими концентрациями брома, калия, стронция, часто редких щелочных элементов, а иногда и тяжелых металлов (медь, цинк, свинец и др.). Такие рассолы особенно широко распространены в бассейнах, в строении которых участвуют мощные толщи галогенных формаций. К ним относятся бассейны Сибирской (Ангаро-Ленский и Тунгусский) и Русской платформ (Предуральский, Прикаспийский).

Терма́льные во́ды – подземные воды с температурой 20°С и более. Температура 20°С условно принята за границу между холодными и термальными водами. Термальные воды составляют большую часть вод подземной гидросферы.

Температура подземных вод на нижней границе земной коры может достигать 500–600°С, а в зонах магматических очагов, где преобладают пары воды, – 1000–1200°С. В артезианских бассейнах молодых геологических плит на глубине 2000–3000 м скважинами вскрываются воды с температурой 70–100°С и более, а в районах древних кристаллических щитов температура на глубинах 5–6 км не превышает 60–70°С. Наиболее ярко термальные воды проявляются в районах современной или недавно закончившейся вулканической деятельности, в тектонически активных горно-складчатых областях и в краевых прогибах и межгорных впадинах. В областях неотектонических нарушений (Альпы, Кавказ, Тянь-Шань, Памир, Гималаи и др.) и в глубокие термальные воды выходят на поверхность в виде горячих источников с температурой до 90–100°С, а в районах современного вулканизма – в виде гейзеров и паровых струй. Скважины глубиной 1000–1500 м, пройденные в зоне разгрузки паровых струй, вскрывают пароводяные смеси и пары с температурой до 200–300°С (Паужетское и Мутновское месторождения на Камчатке, Большие гейзеры в США, Уайракей в Новой Зеландии, Лардерелло в Италии и др.).

Глубина залегания термальных подземных вод зависит от климатической зональности и составляет в районах развития многолетнемёрзлых пород 1500–2000 м, в субтропиках – до 100 м; в зоне тропиков эти воды часто выходят на поверхность. В пределах каждой зоны наблюдается рост температуры с глубиной. В среднем для верхней части земной коры температура на 1 км глубины увеличивается на 32,9°С. Однако геотермические градиенты (значение увеличения температуры с глубиной, обычно на 1 км или 100 м глубины) существенно различаются в зависимости от возрастных, тектонических, литологических и гидродинамических особенностей разных регионов. Наименьший – 6°С/км зарегистрирован в области древнего кристаллического щита в Витватерсранде (Южная Африка), максимальные отмечаются в районах современной вулканической деятельности и в рифтовых поясах – до 100–150°С/км. На территориях внутриплатформенных впадин и предгорных прогибов они либо близки к среднепланетарному, либо превышают его, достигая 40–50°С/км.

Выделяют четыре типа теплового режима термальных вод: низкий (термический градиент до 1°С/100 м, 30–40 мВт/м 2), умеренный (1–2°С/100 м, 40–50 мВт/м 2), повышенный (2–3°С/100 м, 50–60 мВт/м 2), высокий (более 3°С/100м, свыше 60 мВт/м 2).

Химический, газовый состав и минерализация термальных вод разнообразны: от пресных до солёных и рассольных хлоридных натриевых, кальциево-натриевых, азотно-метановых и метановых, местами сероводородных вод. В зоне повышенных и высоких температур и давлений происходит перекристаллизация породообразующих минералов и протекают активные реакции обмена между нагретыми водными растворами и породой, что в значительной мере определяет химический состав термальных вод. Повышение температуры с глубиной приводит к освобождению физически связанной воды, увеличению фильтрационной способности горных пород. С термальными водами связаны процессы минералообразования, формирования гидротермальных месторождений полезных ископаемых.

Термальные воды служат объектом добычи и переработки в целях дальнейшего использования для выработки электроэнергии, отопления и горячего водоснабжения ; извлечения химических элементов (промышленные воды), (термоминеральные воды).

Для выработки электроэнергии в настоящее время геотермальные месторождения используются преимущественно в районах активного вулканизма, где вскрываются перегретые термальные воды с температурой более 120–150°С. Эффективность развития геотермальной энергетики заключается в практической неисчерпаемости природного теплоносителя. Геотермические электростанции работают в Италии, США, Японии, Исландии, Мексике, Новой Зеландии. В России первая геотермальная электростанция на Паужетском месторождении (Камчатка) дала электрический ток в 1967 г., в 1999 г. запущена Верхне-Мутновская ГеоЭС, в 2002 г. – Мутновская ГеоЭС-1.

Для отопления и горячего водоснабжения жилых и производственных зданий (в т.ч. теплиц и оранжерей) используют горячие и весьма горячие термальные воды с температурой 50–100°С. Для отопления тепличных хозяйств используется теплоноситель с еще меньшей температурой – 20–60°С. Кроме того, термальные воды используются для других технических нужд (ферментация чая, сушка, пропарка древесины, мойка шерсти), в плавательных бассейнах, для рыборазведения и др. Такие горячие воды в Российской Федерации широко распространены в Западной и Восточной Сибири, на Камчатке, Чукотке, на Северном Кавказе, в Прикаспии, в Крыму. Низко- и среднетемпературные термальные воды для целей отопления широко применяются в Исландии, Венгрии, а также во Франции, в основном в пределах Парижского и Аквитанского артезианских бассейнов в районе Эльзаса.

На современном этапе геотермальная энергетика развивается в направлении использования низкопотенциальных (30–70°С) термальных вод в качестве аккумуляторов энергии.

Высокие содержания в термальных водах множества растворённых микроэлементов позволяют осуществлять их промышленную добычу. Как правило, термальные воды представляют интерес с точки зрения извлечения йода, брома, бора, лития, цезия, рубидия и др. – в этом случае они рассматриваются как промышленные воды .

Лечебный эффект термоминеральных вод обусловливается их газовым и химическим составом. К бальнеологическим соединениям и элементам относятся углекислый газ, радон, сероводород; немалую бальнеологическую роль могут играть растворённые бром, йод, бор, фтор, мышьяк, кремний и их соединения. На базе месторождений термальных вод функционируют многие крупные курорты, имеющие мировое значение. К ним относятся Кавказские Минеральные Воды (Железноводск, Ессентуки, Пятигорск), Цхалтубо, Сочи-Мацеста, Боржоми (Грузия), Виши (Франция), Висбаден и Наухайм (ФРГ), Карлови-Вари (Чехия) и др.

Классификации термальных вод по температуре зависит от направления их практического применения.

По универсальной 9-балльной шкале температур подземных вод выделяются термальные тёплые воды (20–37°С) – 4 балла, горячие (37–50°С) – 5 баллов и весьма горячие (50–100°С) – 6 баллов, умеренно перегретые (100–200°С) – 7 баллов и весьма перегретые (200–375°С) – 8 баллов. Выше температуры 375°С (9 баллов) исключительно перегретые подземные воды рассматриваются как флюиды с существенно отличными от обычных жидкостей свойствами.

Для теплоэнергетического использования выделяются низкопотенциальные воды с температурой до 70°С, среднепотенциальные – от 70 до 100°С и высокопотенциальные – свыше 100°С (в т.ч. слабоперегретые – 100–150°С, значительно перегретые – 150–250°С и весьма перегретые – 250–375°С).

В бальнеологии термальные воды подразделяются на тёплые (субтермальные) – 20–35°С, термальные (горячие) – 35–42°С и очень горячие (гипертермальные) – свыше 42°С.