Диаграмма фазового состояния позволяет определить. Фазовые диаграммы как средство описания взаимодействия различных материалов

Анализ фазовых диаграмм

Двухфазные линии, как правило, либо соединяют две тройные точки, либо тройную точку с точкой на оси ординат, отвечающую нулевому давлению. Исключение составляет линия жидкость-газ, заканчивающаяся в критической точке . При температурах выше критической различие между жидкостью и паром исчезает.

Сечения и проекции диаграмм бинарных систем

Диаграммы температура-состав

Диаграммы бинарных систем

Неограниченная растворимость в твёрдом состоянии

Эвтектические и эвтектоидные превращения

Сплавы, образующие химические соединения


Wikimedia Foundation . 2010 .

Смотреть что такое "Фазовая диаграмма" в других словарях:

    - (см. ДИАГРАММА СОСТОЯНИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. ФАЗОВАЯ ДИАГРАММА … Физическая энциклопедия

    То же, что диаграмма состояния … Большой Энциклопедический словарь

    фазовая диаграмма - Термодинамическая диаграмма, в которой по осям координат откладываются давление и температура и наносятся кривые фазового равновесия. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    ФАЗОВАЯ ДИАГРАММА, графическое изображение условий, в которых существуют различные равновесные ФАЗЫ вещества. Например, кривая зависимости ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ от ДАВЛЕНИЯ у чистого твердого вещества делит диаграмму на две части. Точки в одной… … Научно-технический энциклопедический словарь

    фазовая диаграмма - fazių pusiausvyros diagrama statusas T sritis Standartizacija ir metrologija apibrėžtis Termodinaminės sistemos fazių pusiausvyros grafinis vaizdas. atitikmenys: angl. phase equilibrium diagram; thermodynamic phase diagram vok.… …

    фазовая диаграмма - Phase Diagram Фазовая диаграмма (диаграмма состояния) Графическое изображение соотношения между параметрами состояния термодинамически равновесной системы (температурой, давлением, составом и др.). Фазовая диаграмма позволяет определить,… … Толковый англо-русский словарь по нанотехнологии. - М.

    Phase diagram Фазовая диаграмма. Графическое представление критических температур и пределов содержания фаз в сплаве или керамической системе, существующих при нагревании или охлаждении. Фазовая диаграмма может быть диаграммой равновесного… … Словарь металлургических терминов

    То же, что диаграмма состояния. * * * ФАЗОВАЯ ДИАГРАММА ФАЗОВАЯ ДИАГРАММА, то же, что диаграмма состояния (см. ДИАГРАММА СОСТОЯНИЯ) … Энциклопедический словарь

    Термин фазовая диаграмма Термин на английском phase diagram Синонимы диаграмма состояния Аббревиатуры Связанные термины критическая температура мицеллообразования, спинодальный распад Определение графическое изображение состояний… … Энциклопедический словарь нанотехнологий

    фазовая диаграмма - fazių diagrama statusas T sritis Standartizacija ir metrologija apibrėžtis Daugiafazės termodinaminės sistemos būsenų diagrama. atitikmenys: angl. phase diagram vok. Gleichgewichtsdiagramm, n; Phasendiagramm, n; Zustandsdiagramm, n;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Книги

Процесс кристаллизации металлических сплавов и связанные с ними многие закономерности строения сплавов описывают с помощью диаграмм фазового равновесия. Эти диаграммы в удобной графической форме показывают фазовый состав и структуру в зависимости от температуры и концентрации. Диаграммы построены для условий равновесия; равновесное состояние соответствует минимальному значению свободной энергии.

Рассмотрение диаграмм состояния позволяет определить фазовые превращения в условиях очень медленного охлаждения или нагрева. Закономерность изменения числа фаз в гетерогенной системе определяется правилом фаз.

Фаза – однородная часть системы, отделенная от других частей системы (фаз) поверхностью раздела, при переходе через которую химический состав или структура вещества изменяется скачком.

При изучении физико-химических равновесий за внешние факторы, влияющие на состояние сплава, принимают температуру и давление. Применяя правило фаз к металлам, можно во многих случаях принять изменяющимся только один внешний фактор – температуру, т.к. давление, за исключением очень высокого, мало влияет на фазовое равновесие в твердом и жидком состояниях. Тогда общие закономерности существования устойчивых фаз, отвечающих условиям равновесия, в математической форме выражаются правилом фаз (правилом Гиббса) и при постоянном давлении выражается следующим уравнением:

С = К + 1 - ,

где К – число компонентов в системе; - число фаз;С – число степеней свободы (вариантность системы).

Число степеней свободы С – число независимых внутренних переменных (состав фаз) и внешних (температура, давление) факторов, которые можно менять без изменения числа фаз, находящихся в равновесии. При фазовых превращениях в сплавах вновь образующаяся фаза не обязательно должна иметь более низкий уровень свободной энергии, чем исходная, но обязательно в процессе фазового превращения свободная энергия системы, в целом, должна уменьшаться.

По кривым свободной энергии можно геометрическим путем построить основные типы диаграмм состояния. Их строят в координатах температура-концентрация в процентном содержании по массе.

Для построения диаграмм состояния используют термический анализ, разработанный Н.С. Курнаковым. Экспериментально получают кривые охлаждения отдельных сплавов и по их перегибам или остановкам, связанных с тепловыми эффектами превращений, определяют температуру соответствующих превращений. Эти температуры называют критическими точками.

При изучении превращений в твердом состоянии используют различные методы физико-химического анализа, микроанализа, рентгеноструктурного, дилатометрического, магнитного анализов и др.

В жидком состоянии большинство металлов неограниченно растворяются один в другом, образуя однофазный жидкий раствор. Любые фазы, образующиеся в сплаве, отличаются по составу от исходного жидкого раствора. Поэтому для образования устойчивого зародыша необходимы не только гетерогенные флуктуации, но и флуктуации концентрации . Флуктуациями концентрации называют временно возникающие отклонения химического состава сплава в отдельных малых объемах жидкого раствора от среднего его состава. Такие флуктуации возникают в результате диффузионного перемещения атомов вещества и вследствие тепловых движений в жидком растворе. Зародыш новой фазы может возникнуть только в тех микрообъемах исходной фазы, состав которых в результате флуктуации концентрации и расположения атомов соответствует составу и строению новой кристаллизующейся фазы.

Скорость роста кристаллов в жидких растворах меньше, чем в чистых металлах. Это объясняется тем, что рост кристаллов требует диффузионного перемещения атомов компонентов в жидком растворе.

Диаграмма состояния разделена линиями на области. Отдельные области могут состоять только из одной фазы, а некоторые – из двух, имеющих разные составы, строение и свойства.

Анализируя диаграмму состояния, можно составить представление о специфике свойств сплавов данной системы компонентов и характере их изменений в зависимости от состава, а также о возможности термической обработки сплавов и температуре нагрева для ее проведения.

Вид диаграммы определяется характером взаимодействий, которые возникают между компонентами в жидком и твердом состояниях.

Диаграмма состояния для сплавов, образующих смеси из чистых компонентов

Оба компонента сплава в жидком состоянии неограниченно растворимы, а в твердом – нерастворимы и не образуют химических соединений и не имеют полиморфных превращений. Общий вид диаграммы на рис. 3. Фазы: жидкость – Ж, кристаллы – А и В.

Линия АСВ – линия начала кристаллизации, является линией ликвидус ; линия ДСЕ – линия конца кристаллизации, является линией солидус . На линии АС начинают выделяться кристаллы А; на линии СВ – кристаллы В ; на линии ДСЕ из жидкости концентрации С одновременно выделяются кристаллы А и В . Эвтектическая смесь двух видов кристаллов, одновременно кристаллизующихся из жидкости, называется эвтектикой .

Рис. 3. Общий вид диаграммы состояния и кривые охлаждения сплавов: 1 – заэвтектического; 2 – доэвтектического; 3 – эвтектического.

На рис. 4 схематически показано строение сплава в разные моменты кристаллизации.

Рис. 4. Строение сплавов

Имея диаграмму состояния, можно проследить за фазовыми превращениями любого сплава и указать состав и количественное соотношение фаз при любой температуре. Это определяется по правилу отрезков.

Для определения концентрации компонентов в двух фазах через данную точку а (рис. 3.), характеризующую состояние сплава, проводят горизонтальную линию до пересечения с линиями, ограничивающими данную область. Проекции точек пересечения в и с на горизонтальную ось диаграммы покажут составы фаз в 1 и с 1 . Отрезки этой линии между точкой а и точками в и с , определяющими составы фаз, обратно пропорциональны количествам этих фаз:

Ж =ac/bc; B=ab/bc.

Эти правила справедливы для любой двухфазной области диаграммы состояния.

При оценке прочностных и других свойств сплава следует иметь в виду, что та часть сплава, которая представлена эвтектикой, имеет более высокую прочность, чем часть, представленная более крупными зернами избыточной фазы.

Диаграмма состояния для сплавов с неограниченной растворимостью в твердом состоянии

На рис. 5 приведена диаграмма состояния для сплавов с неограниченной растворимостью компонентов друг в друге в жидком и твердом состоянии, имеющих одинаковые типы решеток и сходное строение наружных электронных оболочек.

Линия АМВ – линия ликвидус ; линия А N В – линия солидус ; фаза представляет собой твердый раствор компонентов А и В , зерна этой фазы имеют единую кристаллическую решетку, но у сплавов разного состава числа атомов компонентов А и В в элементарных ячейках решетки различно.

Кристаллизация α-фаз в сплавах разного рода происходит в соответствие с правилом отрезков. В случае равновесной кристаллизации, происходящей при достаточно малой скорости охлаждения сплава, к концу кристаллизации состав окончательно сформировавшейся фазы А 4 должен соответствовать исходному составу сплава В 1 данном случае сплава І). Это обусловлено непрерывно происходящей диффузией между обеими фазами.

Рис. 5. Общий вид диаграммы состояния и кривая охлаждения сплава.

В случае ускоренного охлаждения сплава при кристаллизации диффузионные процессы не успевают завершиться. В связи с этим центральная часть каждого зерна оказывается обогащенной более тугоплавким компонентом В, а периферийная – легкоплавким компонентом А . Это явление называется дендритной ликвацией , снижающей прочностные и др. свойства сплавов.

Дендритная ликвация может быть устранена путем длительного отжига. Этот отжиг называется диффузионным. Происходящие при этом диффузионные процессы выравнивают химический состав в зернах.

При образовании твердого раствора временное сопротивление при растяжении, предел текучести и твердость повышаются при сохранении достаточно высокой пластичности. Это объясняется тем, что атомы растворенного элемента группируются в искаженных областях решетки, что мешает продвижению дислокаций.

На рис 3.3 представлена фазовая диаграмма в P–Vкоординатах, а на рис.3.4 - вT–Sкоординатах.

Рис.3.3. Фазовая Р-Vдиаграмма Рис.3.4. Фазовая Т-S диаграмма

Обозначения :

т + ж – область равновесного сосуществования твердой и жидкой

т + п – область равновесного сосуществования твердой и паро-

ж + п – область равновесного сосуществования жидкой и паровой

Если на Р – Т диаграмме области двухфазных состояний изображались кривыми, то P–VиT–Sдиаграммах – это некоторые площади.

Линия AKFназывается пограничной кривой. Она в свою очередь разделяется на нижнюю пограничную кривую (участок АК) и верхнюю пограничную кривую (участокKF).

На рис.3.3 и 3.4 линия BF, где смыкаются области трех двухфазных состояний, - это растянутая тройная точка Т с рис3.1 и 3.2.

При плавлении вещества, которое, как и парообразование, протекает при постоянной температуре, образуется равновесная двухфазная смесь твердой и жидкой фаз. Значения удельного объема жидкой фазы в составе двухфазной смеси снимаются на рис3.3 с кривой АN, а значения удельного объема твердой фазы – с кривой ВЕ.

Внутри области, ограниченной контуром AKF, вещество представляет собой смесь двух фаз: кипящей жидкости (Ж) и сухого насыщенного пара (П).

Вследствие аддитивности объема удельный объем такой двухфазной смеси определяется по формуле

удельная энтропия:

    1. Особые точки фазовых диаграмм

      1. Тройная точка

Тройная точка – это точка, в которой сходятся кривые равновесия трех фаз. На рис.3.1 и 3.2 – это точка Т.

Некоторые чистые вещества, например, сера, углерод и др., в твердом агрегатном состоянии имеют несколько фаз (модификаций).

В жидком и газообразном состояниях модификации отсутствуют.

В соответствии с уравнением (1.3) в однокомпонентной термодеформационной системе одновременно находиться в равновесии могут не более трех фаз.

Если у вещества в твердом состоянии существуют несколько модификаций, то общее количество фаз вещества в сумме превышает три и такое вещество должно иметь несколько тройных точек. В качестве примера на рис.3.5 приведена фазовая Р –Т диаграмма вещества, имеющего две модификации в твердом агрегатном состоянии.

Рис.3.5. Фазовая Р-Т диаграмма

вещества с двумя кристалличес-

кими фазами

Обозначения :

I– жидкая фаза;

II– газообразная фаза;

III 1 иIII 2 – модификации в твердом агрегатном состоянии

(кристаллические фазы)

В тройной точке Т 1 в равновесии находятся: газообразная, жидкая и кристаллическая фазаIII 2. Эта точка являетсяосновной тройной точкой.

В тройной точке Т 2 в равновесии находятся: жидкая и две кристаллические фазы.

В тройной точке Т 3 в равновесии находятся газообразная и две кристаллические фазы.

У воды известно пять кристаллических модификаций (фаз): III 1, III 2 ,III 3 ,III 5 ,III 6 .

Обычный лед – это кристаллическая фаза III 1 , а остальные модификации образуются при очень больших давлениях, составляющих тысячи МПа.

Обычный лед существует до давления 204,7 МПа и температуры – 22 0 С.

Остальные модификации (фазы) – это лед плотнее воды. Один из этих льдов – « горячий лед » наблюдался при давлении 2000 МПа вплоть до температуры + 80 0 С.

Термодинамические параметры основной тройной точки воды следующие:

Т тр = 273,16 К = 0,01 0 С;

Р тр = 610,8 Па;

V тр = 0,001 м 3 /кг.

Аномалия кривой плавления (
) существует только для обычного льда.

ДИАГРАММА СОСТОЯНИЯ (фазовая диаграмма), графич. изображение всех возможных состояний термодинамич. системы в пространстве осн. параметров состояния т-ры Т, давления р и состава х (обычно выражаемого молярными или массовыми долями компонентов). Для сложных систем, состоящих из многих фаз и компонентов, построение диаграммы состояния является единственным методом, позволяющим на практике установить, сколько фаз и какие конкретно фазы образуют систему при данных значениях параметров состояния . Каждое реально существующее состояние системы на диаграмме состояния изображается т. наз. фигуративной точкой; областям существования одной фазы отвечают участки пространства (на трехмерных диаграммах состояния) или плоскости (на двухмерных диаграммах состояния), условиям сосуществования фаз - соотв. пов-сти или линии; изменение фазового состояния системы рассматривается как движение фигуративной точки на диаграмме состояния. Анализ относит. расположения объемных участков, пов-стей, линий и точек, к-рые образуют диаграмму состояния, позволяет однозначно и наглядно определять условия фазового равновесия , появления в системе новых фаз и хим. соед., образования и распада жидких и твердых р-ров и т. п. Д иаграммы состояния используют в материаловедении, металлургии , нефтепереработке , хим. технологии (в частности, при разработке методов разделения в-в), произ-вах электронной техники и микроэлектроники и т. п. С ее помощью определяют направленность процессов, связанных с фазовыми переходами , осуществляют выбор режимов термообработки, отыскивают оптимальные составы сплавов и т. п. Теоретич. основами построения и интерпретации диаграмм состояния равновесных систем являются: 1) условие фазового равновесия , согласно к-рому хим. потенциалы m i каждого i-го компонента во всех фазах при равновесии равны; 2) условие химического равновесия , согласно к-рому сумма хим. потенциалов вступающих в р-цию в-в при равновесии равна аналогичной сумме для продуктов р-ции; 3) фаз правило Гиббса , согласно к-рому число компонентов К, число фаз Ф и вариантность системы v (т. е. число независимых параметров состояния , к-рые можно в определенных пределах изменять без изменения числа и природы фаз) связаны соотношением: v = К - Ф + 2. Цифра 2 означает, что учитываются только два интенсивных параметра состояния - т-ра и давление . Если учитываются и др. параметры, напр., напряженности электромагнитного или гравитационного полей, вариантность системы соотв. увеличивается. Различают нонвариантные (v = 0), моновариантные (v = 1), дивариантные (v = 2) и т. д. состояния (равновесия); 4) правило о соприкасающихся пространствах состояния, согласно к-рому если два разных пространства состояния (поля в случае плоской диаграммы) соприкасаются по линии, то они различаются между собой на одну фазу, если поля соприкасаются в точке, то состояния различаются на две фазы. Для построения диаграмм состояния расчетным путем необходимо знать зависимости хим. потенциалов всех компонентов системы от Т, р и состава фаз. Приближенные методы расчета с применением ЭВМ интенсивно развиваются, в частности, для многокомпонентных сплавов . Однако пока диаграммы состояния строят на основе эксперим. данных, получаемых гл. обр. термическим анализом , к-рый позволяет определять зависимости т-р плавления или кристаллизации от состава, а также изучением равновесий жидкость - пар и жидкость - жидкость . Широко используют рентгеновский фазовый анализ , данные о микроструктуре затвердевших расплавов , измерения физ. св-в фаз (см. Диаграмма состав-свойство). Изучение диаграмм состояния составляет осн. содержание физико-химического анализа .
Однокомпонентные системы. Однокомпонентной системой является любое простое в-во или хим. соед., обладающее строго определенным составом в газообразном, жидком и твердом состояниях. Диаграммы состояния обычно строят на плоскости в координатах Т-р (рис. 1). Фазовые поля (области существования) пара V, жидкости L и твердой фазы S дивариантны, т.е. допускают одновременное изменение двух параметров состояния - Т и р.

Рис. 1 Диаграмма состояния однокомпонентной системы. S, L и V - соотв. области существования твердой, жидкой и паровой фаз; 1, 2 и 3 кривые кипения (испарения), плавления и возгонки (сублимации) соотв., К критич. точка; А тройная точка .

Обычно при повышении т-ры взаимная растворимость жидкостей увеличивается, поэтому по своим св-вам оба насыщенных р-ра, составы к-рых изменяются по отрезкам бинодали ЕК и KF, сближаются. Наконец, при т-ре T к различие между ними исчезает; эта т-ра наз. критической т-рой растворимости (смешения), выше нее может существовать лишь одна жидкая фаза. Большинство систем с расслоением р-ров характеризуются только одной критич. т-рой р-римости, чаще всего верхней, т. е. на диаграмме состояния имеют незамкнутую снизу бинодаль. Если в таких системах не образуются хим. соед., область сосуществования двух жидких фаз ограничена снизу кривой кристаллизации одного из компонентов при т-ре превращения жидкая фаза 1 D жидкая фаза 2 + твердая фаза. Такое трехфазное равновесие наз. монотектическим; оно по своей термодинамич. природе аналогично эвтектическому или эвтектоидному. При синтектическом трехфазном равновесии две жидкие фазы взаимодействуют с образованием твердого соед. Такое равновесие аналогично перитектическому. В нек-рых системах бинодаль имеет форму замкнутой кривой (овал), т. е. система имеет две т-ры смешения верхнюю и нижнюю. Диаграмма равновесия жидкость-пар. При р = const каждому составу жидкой смеси отвечает определенная т-ра равновесия с паром и определенный состав пара , отличающийся, как правило, от состава жидкой смеси . На диаграмме состояния (рис. 8, а) кривые кипения и конденсации изображают зависимости т-р начала кипения и конденсации от состава и отделяют поля жидкости L и пара V от поля (L + V)гетерог. состояний жидкость-пар. На кривой кипения м. б. экстремум: максимум (рис. 8, б) или минимум (рис. 8, в); в этих точках кривая кипения касается кривой конденсации , т. е. составы равновесных жидкости и пара совпадают Жидкие смеси такого состава полностью выкипают, подобно чистым жидкостям , при постоянной т-ре без изменения состава (см. Азеотропные смеси). Диаграммы состояния, описывающие равновесия двухкомпонентных твердых р-ров с жидкими р-рами и жидких р-ров с паром , подобны.

Рис. 8. Диаграммы состояния, двойной системы, описывающие равновесие жидкость - пар . L и V области существования жидкости и пара соотв.. (L + V) область сосуществования жидкой и паровой фаз; а система без азеотропной точки; б и в два типа азеотропных смесей

Тройные системы. Состояния тройных систем однозначно определяются четырьмя независимыми параметрами: Т, р и молярными (массовыми) долями двух компонентов (доля третьего компонента определяется из условия равенства единице суммы долей всех компонентов). Поэтому при построении диаграмм состояния тройных систем один из независимых параметров (р или Т) или два (р и T) фиксируют и рассматривают пространственные изобарные или изотермич. диаграммы или плоские изобарно-изотермич. диаграммы, соответствующие одному из сечений пространственной диаграммы состояния. Каждому составу тройной смеси отвечает определенная точка на плоскости составов. Область возможных составов тройных систем наз. композиционным треугольником или треугольником составов. В системе прямоугольных координат он представляет собой прямоугольный равнобедренный треугольник, вершины к-рого отвечают компонентам А, В и С, а стороны - двойным смесям АВ, ВС и СА. Более распространено использование равностороннего композиц. треугольника. В этом случае все компоненты равноправны, а за начало координат можно с равным основанием принять любую из его вершин (см. Многокомпонентные системы). Для построения пространств. изобарной или изотермич. диаграммы состояния по координатной оси, перпендикулярной композиц. треугольнику, откладывают соотв. T или р. При этом фигуративные точки системы в целом и ее трехкомпонентных фаз оказываются расположенными внутри трехгранной призмы, грани к-рой изображают двойные системы, ребра -однокомпонентные системы. На рис. 9, а изображена простейшая

Реальные химические вещества, с которыми практически приходится иметь дело, и даже сверхчистые кристаллы элементарных полупроводников Ge и Si всегда содержат остаточные примеси, то есть всегда представляют собой вещества, состоящие из нескольких химических элементов. Взаимодействие химических элементов, образующих данный материал, может быть весьма сложным. Конкретный результат этого взаимодействия зависит от кристаллохимической природы взаимодействующих элементов, их концентрации, а также от внешних факторов - температуры и давления.

Основным средством изображения результатов взаимодействия химических элементов или соединений, образующих данное вещество, являются диаграммы состояния системы. Диаграмма состояния показывает устойчивые состояния, то есть состояния, которые при данных условиях обладают минимумом свободной энергии. Поэтому диаграмма состояния также может называться диаграммой фазового равновесия, так как она показывает, какие при данных условиях существуют равновесные фазы. В соответствии с этим и изменения в состоянии системы, которые отражены на диаграмме, относятся к равновесным условиям, то есть при отсутствии переохлаждения или пересыщения в системе. Однако фазовые превращения не могут происходить в равновесных условиях (см. ниже), поэтому диаграмма состояния представляет собой теоретический случай. Тем не менее, роль диаграмм состояния в понимании характера и результатов взаимодействия различных химических веществ и прогнозировании этих результатов чрезвычайно важна, потому что именно характер взаимодействия определяет свойства получаемого материала. На практике диаграммы состояния используются для рассмотрения превращений при малых скоростях охлаждения или нагрева.

Диаграммой состояния системы называется геометрическое изображение равновесных фазовых состояний одноили многокомпонентной термодинамической системы как функции параметров, определяющих эти состояния (концентрации, температуры, давления).

Определим некоторые понятия, используемые при описании диаграмм состояния.

Термодинамической системой называется тело макроскопических размеров (совокупность тел), между отдельными частями которого (меж

ду которыми) возможен теплообмен и диффузия хотя бы одного из компонентов системы и для которого (которых) справедливы начала термодинамики.

Термодинамические системы делятся на гомогенные и гетерогенные . Гомогенной называется термодинамическая система, внутри которой нет поверхностей раздела фаз, отделяющих друг от друга части системы, которые различались бы либо по кристаллической структуре, либо по своим физическим и химическим свойствам. Гетерогенная система состоит из частей, имеющих либо различную структуру, либо различные физико-химические свойства и отделенных друг от друга поверхностями раздела фаз. Примером гетерогенной системы может являться вода,

находящаяся в равновесии с паром.

Фаза - это гомогенная система или система, представляющая собой совокупность одинаковых по кристаллической структуре и физико-химическим свойствам гомогенных систем, отделенных друг от друга поверхностями раздела. В приведенном выше примере фазами являются вода и пар, которые различаются, например, плотностью.

Поверхности раздела фаз представляют собой слои конечной толщины, в которых в направлении от одной фазы к другой изменяется, по крайней мере, один из параметров системы. Поверхности раздела фаз по отношению к граничащим фазам обладают избыточной энергией (энергия поверхностного натяжения).

Для твердых тел важнейшим признаком фазы является ее кристаллическая решетка.1 Каждая твердая фаза обладает своей, только ей присущей кристаллической решеткой, отличающейся от решеток других фаз либо типом, либо параметрами. Твердая кристаллическая фаза может быть получена в виде монокристалла или поликристалла, представляющего собой совокупность зерен или кристаллитов. Различно ориентированные в пространстве кристаллиты поликристалла отделены друг от друга поверхностями раздела в несколько атомных слоев (см. гл. 3). Очевидно, что границы зерен не являются межфазными границами.

Термодинамические системы могут быть однои многокомпонентными.

Компонентом системы называется часть системы, количество которой может изменяться независимо от количества других частей. В нашем случае компонентами системы могут быть химические элементы или соединения. Число компонентов системы, вообще говоря, может быть не

1В принципе, твердая фаза может также быть аморфной или стеклообразной. Обе эти фазы характеризуются отсутствием дальнего порядка в расположении атомов, скорее напоминая жидкость. Здесь мы будем рассматривать только кристаллические материалы.

Рис. 4.1. Диаграмма состояния системы Ge–Si.

равно числу различных химических элементов в системе. Например, вода (H2O) состоит из водорода и кислорода, но это однокомпонентная система. На рис. 4.1 и рис. 4.2 показаны диаграммы фазового равновесия двух характерных двухкомпонентных (бинарных) полупроводниковых систем - Ge–Si и InSb–AlSb. Компонентами системы в первом случае являются Ge и Si, а во втором - InSb и AlSb, а не Sb, Al, In, так как количество In и Al в системе зависит от количества Sb, а количество InSb не зависит от количества AlSb. Поэтому число компонентов системы - это минимальное число химических веществ, необходимых для образования любой фазы данной системы.

Термодинамически равновесным состоянием системы называют такое ее состояние, при котором параметры этого состояния не меняются с течением времени и в системе отсутствуют потоки любого типа.

Равновесное состояние системы может быть однофазным, двухфазным и многофазным. При смешивании двух или более твердых фаз могут образовываться твердые растворы, соединения и механические смеси . Последнее реализуется, если эти фазы не взаимодействуют друг с другом. Фазами, образующими смесь, могут быть элементы, соединения или твердые растворы на их основе, а также аллотропические модификации одного и того же химического элемента (αи β-олово и т. п.). Максимально возможное число фаз, находящихся в равновесии, определяется правилом фаз Гиббса . Правило фаз устанавливает соотношение меж

Рис. 4.2. Диаграмма состояния системы InSb–AlSb.

ду числами фаз, компонентов и степеней свободы системы:

c = k f + 2, (4.1)

где c - число степеней свободы системы, k - число компонентов системы, f - число фаз в системе.

Под числом степеней свободы системы понимают число внешних и внутренних параметров (температура, давление и концентрация), которое можно изменять без изменения числа фаз в системе. Если число степеней свободы равно нулю, то нельзя изменять внешние и внутренние параметры системы без того, чтобы это не вызвало изменения числа фаз. Если число степеней свободы равно единице, то возможно изменение в некоторых пределах одного из параметров и это не вызовет уменьшения или увеличения числа фаз.

Например, рассмотрим случай кристаллизации чистого вещества (элементарного полупроводника) при постоянном давлении. В этом случае правило Гиббса принимает вид c = k f + 1.2 Когда полупроводник

находится в жидком состоянии, то есть f = 1, число степеней свободы равно 1 (c = k f +1 = 1 − 1 + 1 = 1). Температуру в данном случае можно

изменять, не изменяя агрегатного состояния. В момент кристаллизации

f = 2 (две фазы - твердая и жидкая), c = k f +1 = 1 − 2+1 = 0. Это

значит, что две фазы находятся в равновесии при строго определенной

2 Независимыми переменными в уравнении Гиббса являются концентрация, температура и давление. Если давление постоянно, то число переменных в уравнении уменьшится на единицу.

температуре (температуре плавления), и она не может быть изменена до тех пор, пока одна из фаз не пропадет (на графике температура–время появится площадка T = const, протяженность которой будет равна времени от начала и до конца кристаллизации). Источником поддержания постоянной температуры является в данном случае выделяющаяся скрытая теплота кристаллизации , равная разности теплосодержаний старой и новой фаз. По завершении кристаллизации в системе остается только одна твердая фаза, то есть температура снова может изменяться (уменьшаться) без изменения числа фаз.

Диаграммы состояния изображают фазовый состав системы при разных концентрациях компонентов X , температурах T и давлении P . Диаграммы состояния в общем случае являются пространственными. Размерность пространства зависит от числа независимых переменных, функцией которых является фазовый состав. Эти переменные и являются координатами, в которых строится диаграмма. Простейший тип фазовых диаграмм характеризует состояние чистого однокомпонентного материала в зависимости от давления и температуры, например, хорошо известная диаграмма состояния воды. Однако подобные однокомпонентные системы мы не будем рассматривать, а сразу перейдем к рассмотрению многокомпонентных систем, так как при получении полупроводников используются именно многокомпонентные диаграммы. Чаще всего такие диаграммы строят в координатах температура–концентрация (T X ). В

этом случае для бинарных (двухкомпонентных) систем диаграммы изображаются на плоскости. Для тройных (трехкомпонентных) систем диаграммы строятся в трехмерном пространстве и т. д. Если кроме температуры переменным является также давление, то уже и для бинарных систем диаграммы становятся трехмерными (P T X диаграммы). В дальнейшем мы будем рассматривать в основном только бинарные системы, построенные в координатах T X . Однако в этой главе будут также рассмотрены и P T X диаграммы некоторых полупроводниковых бинарных систем, имеющие большое практическое значение.

Обычно концентрация на диаграммах выражается в весовых или мольных долях одного из компонентов или в атомных процентах. Поэтому область изменения концентрации, отложенная на оси X , ограничена и простирается от нуля до единицы или до 100%. Для полупроводниковых систем наряду с диаграммами, построенными в линейном масштабе, иногда строят диаграммы, на которых концентрация какого-либо компонента откладывается в атомах на кубический сантиметр или в атомных процентах, но используется логарифмический масштаб. Это связано с тем, что, как правило, предельная растворимость (см. гл. 7) большин

Рис. 4.3. Диаграмма состояния системы Si–Au с различными масштабами по оси концентраций (в области, примыкающей к полупроводнику, атомные проценты легирующего компонента отложены в логарифмическом масштабе, а далее концентрация в атомных процентах отложена в линейном масштабе).

ства элементов (примесей) в полупроводниках в твердом состоянии мала (менее 0.1 ат.%) и реально используемое легирование по концентрации составляет 1015–1019 атомов/см3, то есть 10−5–10−2 ат.% (см. рис. 4.3).

Фазовые диаграммы состояния дают информацию о характере фаз и фазовом составе системы при изменении концентрации одного или нескольких компонентов, температуры и давления. С помощью равновесных диаграмм состояния для данных условий можно определить: 1) число фаз в системе; 2) состав каждой фазы, ее природу (элементарное вещество, соединение, твердый раствор) и условия, при которых она образуется; 3) относительное количество каждой из фаз.

Фазовые диаграммы строятся на основе данных физико-химического анализа. В основе этого анализа лежит экспериментальное изучение зависимостей физических свойств от таких параметров, как концентрация, температура, давление. Знание этих зависимостей позволяет устанавливать природу фаз и границы их существования. Наиболее распространенными методами, используемыми для построения диаграмм состояния, являются термографические и дилатометрические методы. Их сущность заключается в том, что для сплава данного состава температуры фазовых превращений определяются по скачкообразному изменению энтальпии H (теплосодержания) или объема V системы, фиксируемому на кривых температура–время (температуру отмечают через определенные промежутки времени) или температура–объем в процессе охлаждения или нагревания сплава. Определив таким образом точки фазовых превращений для сплавов разного состава данной системы, можно построить всю диаграмму состояния. Этими методами определяют только фазовые превращения первого рода. Эти переходы следует отличать от фазовых превращений второго рода (ферромагнитное–парамагнитное состояния, сверхпроводящее–несверхпроводящее, упорядоченное–неупорядоченное), сопровождаемых скачкообразным изменением коэффициента сжимаемости и теплоемкости. В этом случае строят диаграммы состав–свойство или для данного состава диаграммы температура–свойство и т. д.