Термодинамические системы. Основные параметры состояния термодинамических систем

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

Совокупность макроскопич. тел, к-рые могут взаимодействовать между собой и с др. телами (внеш. средой) - обмениваться с ними энергией и в-вом. Т. с. состоит из столь большого числа структурных ч-ц (атомов, молекул), что её состояние можно характеризовать макроскопич. параметрами: плотностью, давлением, концентрацией в-в, образующих Т. с., и т. д.

РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ), если параметры системы с течением времени не меняются и в системе нет к.-л. стационарных потоков (теплоты, в-ва и др.). Для равновесных Т. с. вводится понятие температуры как параметра , имеющего одинаковое значение для всех макроскопич. частей системы. Число независимых параметров состояния равно числу степеней свободы Т. с., остальные параметры могут быть выражены через независимые с помощью уравнения состояния. Св-ва равновесных Т. с. изучает равновесных процессов (термостатика); св-ва неравновесных систем - .

В термодинамике рассматривают: закрытые Т. с., не обменивающиеся в-вом с др. системами, обменивающиеся в-вом и энергией с др. системами; адиабатные Т. с., в к-рых отсутствует с др. системами; изолированные Т. с., не обменивающиеся с др. системами ни энергией, ни в-вом. Если система не изолирована, то её состояние может изменяться; изменение состояния Т. с. наз. термодинамическим процессом. Т. с. может быть физически однородной (гомогенной системой) и неоднородной (гетерогенной системой), состоящей из неск. однородных частей с разными физ. св-вами. В результате фазовых и хим. превращений (см. ФАЗОВЫЙ ПЕРЕХОД) гомогенная Т. с. может стать гетерогенной и наоборот.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

Совокупность макроскопич. тел, к-рые могут взаимодействовать между собой и с др. телами (внеш. средой) - обмениваться с ними энергией и веществом. Т. с. состоит из столь большого числа структурных частиц (атомов, молекул), что её со-стойние можно характеризовать макроскопич. параметрами: плотностью, давлением, концентрацией веществ, образующих Т. с., и т. д.

Т. с. находится в равновесии (см. Равновесие термодинамическое), если параметры системы с течением времени не меняются и в системе нет к.-л. стационарных потоков (теплоты, вещества и др.). Для равновесных Т. с. вводится понятие температуры как параметра состояния, имеющего одинаковое значение для всех макроскопич. частей системы. Число независимых параметров состояния равно числу степеней свободы Т. с., остальные параметры могут быть выражены через независимые с помощью уравнения состояния. Свойства равновесных Т. с. изучает термодинамика равновесных процессов (термостатика), свойства не-равновесных систем - термодинамика неравновесных процессов.

В термодинамике рассматривают: з а к р ы т ы е Т. с., не обменивающиеся веществом с др. системами; открытые системы, обменивающиеся веществом и энергией с др. системами; а д и а б а т н ы е Т. с., в к-рых отсутствует теплообмен с др. системами; и з о л и р о в а н н ы е Т. гомогенной системой)и неоднородной ( гетерогенной системой), состоящей из нескольких однородных частей с разными физ. свойствами. В результате фазовых и хим. превращений (см. Фазовый переход )гомогенная Т. с. может стать гетерогенной и наоборот.

Лит.: Эпштейн П. С., Курс термодинамики, пер. с англ., М.- Л., 1948; Леонтович М. А., Введение в термодинамику, 2 изд., М.-Л., 1951; Самойлович А, Г., Термодинамика и , 2 изд., М., 1955.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА" в других словарях:

    Макроскопическое тело, выделенное из окружающей среды при помощи перегородок или оболочек (они могут быть также и мысленными, условными) и характеризующееся макроскопическими параметрами: объемом, температурой, давлением и др. Для этого… … Большой Энциклопедический словарь

    термодинамическая система - термодинамическая система; система Совокупность тел, могущих энергетически взаимодействовать между собой и с другими телами и обмениваться с ними веществом … Политехнический терминологический толковый словарь

    ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА - совокупность физ. тел, которые могут обмениваться между собой и с др. телами (внешней средой) энергией и веществом. Т. с. является любая система, состоящая из очень большого числа молекул, атомов, электронов и др. частиц, имеющих множество… … Большая политехническая энциклопедия

    термодинамическая система - Тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно технической терминологии. 1984 г … Справочник технического переводчика

    термодинамическая система - – произвольно выбранная часть пространства, содержащая одно или несколько веществ и отделенная от внешней среды реальной или условной оболочкой. Общая химия: учебник / А. В. Жолнин … Химические термины

    термодинамическая система - макроскопическое тело, отделенное от окружающей среды реальными или воображаемыми границами, которое можно охарактеризовать термодинамическими параметрами: объемом, температурой, давлением и др. Различают изолированные,… … Энциклопедический словарь по металлургии

    Макроскопическое тело, выделенное из окружающей среды при помощи перегородок или оболочек (они могут быть также и мысленными, условными), которое можно характеризовать макроскопическими параметрами: объёмом, температурой, давлением и др. Для… … Энциклопедический словарь

    Термодинамика … Википедия

    термодинамическая система - termodinaminė sistema statusas T sritis chemija apibrėžtis Kūnas (kūnų visuma), kurį nuo aplinkos skiria reali ar įsivaizduojama riba. atitikmenys: angl. thermodynamic system rus. термодинамическая система … Chemijos terminų aiškinamasis žodynas

    термодинамическая система - termodinaminė sistema statusas T sritis fizika atitikmenys: angl. thermodynamic system vok. thermodynamisches System, n rus. термодинамическая система, f pranc. système thermodynamique, m … Fizikos terminų žodynas

Основные параметры состояния термодинамических систем

Термодинамической системой называется совокупность различныхтел, способных энергетически взаимодействовать между собой и окру-жающей средой. При этом количество вещества может быть постоянным или переменным, а тела могут находиться в различных агрегатных состоя-ниях (газообразном, жидком или твердом).

Под окружающей средой понимается совокупность всех остальных тел, не вошедших в термодинамическую систему.

Термодинамическая система называется изолированной , если она не взаимодействует с окружающей средой, закрытой - если это взаимодейст-вие происходит только в форме обмена энергией, и открытой - если она обменивается с окружающей средой как энергией, так и веществом. Измене-ние состояния термодинамической системы в результате обмена энергией с окружающей средой называется термодинамическим процессом .

Основными параметрами, которыми характеризуются процессы вза-имного превращения работы и теплоты, являются температура Т , давление р и объем V .

Температура является мерой интенсивности движения молекул ве-щества. Чем больше кинетическая энергия движения молекул, тем выше температура. Температура, соответствующая состоянию полного покоя молекул газа, принята за абсолютный нуль. Эта точка является началом от-


счета температуры по абсолютной шкале Кельвина (обозначение - Т , К). В технике обычно используется стоградусная шкала температур Цельсия (обозначение - t , °С), в которой за 0 °С принята точка плавления льда, а за 100 градусов - постоянная точка кипения воды при нормальном атмо-сферном давлении.

Пересчет температуры из стоградусной шкалы в абсолютную произ-водится по формуле

Т = t +273,15К, (2.2)

при этом по размеру градус Цельсия равен кельвину: 1 °С = 1 К, т. е.

Температура определяет направление перехода теплоты, выступает как мера нагретости тел. Две системы, находящиеся между собой в тепло-вом равновесии, имеют одинаковые температуры.

Давление газа. Согласно кинетической теории,газ,находящийся взакрытом сосуде, оказывает на его стенки давление, которое является ре-зультатом силового воздействия молекул газа, находящихся в беспорядоч-ном движении. Давление определяется как сила, действующая на единицу поверхности, и измеряется в паскалях (Па = Н/м 2).

Сумма барометрического (атмосферного) и избыточного давления, оказываемого газом на стенки сосуда, составляет абсолютное давление:

где V - объем, занимаемый газом, м 3 ; М - масса газа в объеме V , кг. Количество вещества, содержащееся в единице объема, называют

плотностью газа ρ , кг/м 3 . Она является обратной величиной по отношению к удельному объему.

Состояние термодинамической системы, характеризуемое постоян-ным во времени и во всей массе системы значением параметров, называет-ся равновесным . В системе, находящейся в термодинамическом равнове-сии, отсутствует всякий поток тепла и вещества как внутри системы, так и между системой и окружающей средой. Равновесное состояние газа можно выразить уравнением f (р , V , T) = 0.


Идеальным газом называется газ,состоящий из молекул,размерамикоторых можно пренебречь и которые не взаимодействуют между собой (отсутствует потенциальная энергия взаимодействия). Введение понятия идеального газа в термодинамике позволяет получить более простые ана-литические зависимости между параметрами состояния. Опыт показывает, что с известным приближением эти зависимости могут быть применены для изучения свойств реальных газов.

Термодинамическая система - это процесс или среда, которая используется при анализе передачи энергии. Термодинамическая система - это любая зона или пространство, ограниченное действительными или воображаемыми границами, выбранными для анализа энергии и ее преобразования. Границы ее могут быть неподвижными или подвижными .

Газ в металлическом сосуде является примером системы с неподвижными границами. Если необходимо проанализировать газ в баллоне для , стенки сосуда - это неподвижные границы. Если необходимо проанализировать воздух в воздушном шаре, поверхность воздушного шара - подвижная граница. Если нагреть воздух в воздушном шаре, эластичные стенки шарика растягиваются, и граница системы меняется с расширением газа.

Пространство, смежное с границей, называется средой. У всех термодинамических систем есть среда, которая может являться источником или забирать ее. Среда может также проделать работу над системой или испытывать на себе работу системы.

Системы могут быть большими или маленькими, в зависимости от границ. Например, система может охватывать всю холодильную систему или газ в одном из цилиндров компрессора. Она может существовать в вакууме или может содержать несколько фаз одного или более веществ. Следовательно, действительные системы могут содержать сухой воздух и (два вещества) или воду и водяной пар (две стадии одного и того же вещества). Однородная система состоит из одного вещества, одной его фазы или однородной смеси нескольких компонентов.

Системы бывают замкнутыми или открытыми . В замкнутой только энергия пересекает ее границы. Следовательно, теплота может переходить через границы замкнутой системы в среду или из среды в систему.

В открытой системе и энергия, и масса могут переходить из системы в среду и обратно. При анализе насосов и теплообменников необходима открытая система, так как жидкости должны пересекать границы при анализе. Если массовый расход открытой системы устойчивый и однородный, то ее называют открытой системой с постоянным расходом. Массовый расход показывает, открыта или закрыта она.

Состояние термодинамической системы определяется физическими свойствами вещества. Температура, давление, объем, внутренняя энергия, и энтропия - это свойства, определяющие состояние, при котором существует вещество. Так как состояние системы - это состояние равновесия, его можно определить, только когда свойства системы стабилизированы и больше не изменяются.

Другими словами, состояние системы можно описать, когда она находится в состоянии равновесия с окружающей средой.

Долгое время среди физиков и представителей других наук был способ описания того, что они наблюдают в процессе своих экспериментов. Отсутствие единого мнения и наличие большого количества терминов, взятых «с потолка», приводило к путанице и недопониманиям среди коллег. Со временем каждый раздел физики приобрел свои устоявшиеся определения и единицы измерения. Так появились термодинамические параметры, объясняющие большинство макроскопических изменений в системе.

Определение

Параметры состояния, или термодинамические параметры, - это ряд физических величин, которые все вместе и каждая в отдельности могут дать характеристику наблюдаемой системе. К ним относятся такие понятия, как:

  • температура и давление;
  • концентрация, магнитная индукция;
  • энтропия;
  • энтальпия;
  • энергии Гиббса и Гельмгольца и многие другие.

Выделяют интенсивные и экстенсивные параметры. Экстенсивными называются те, которые находятся в прямой зависимости от массы термодинамической системы, а интенсивными - которые определяются другими критериями. Не все параметры одинаково независимы, поэтому для того, чтобы вычислить равновесное состояние системы, необходимо определять сразу несколько параметров.

Кроме того, среди физиков существуют некоторые терминологические разногласия. Одна и та же физическая характеристика у разных авторов может называться то процессом, то координатой, то величиной, то параметром, а то и просто свойством. Все зависит от того, в каком контенте ученый ее использует. Но в некоторых случаях существуют стандартизированные рекомендации, которых должны придерживаться составители документов, учебников или приказов.

Классификация

Существует несколько классификаций термодинамических параметров. Так, исходя из первого пункта, уже известно, что все величины можно разделить на:

  • экстенсивные (аддитивные) - такие вещества подчиняются закону сложения, то есть их значение зависит от количества ингредиентов;
  • интенсивные - они не зависят от того, сколько вещества было взято для реакции, так как при взаимодействии выравниваются.

Исходя из того, в каких условиях находятся вещества, составляющие систему, величины можно разделить на те, которые описывают фазовые реакции и химические реакции. Кроме того, нужно учитывать вступающих в реакцию. Они могут быть:

  • термомеханические;
  • теплофизические;
  • термохимические.

Помимо этого, любая термодинамическая система выполняет определенную функцию, поэтому параметры могут характеризовать работу или теплоту, получаемую в результате реакции, а также позволяют рассчитать энергию, необходимую для переноса массы частиц.

Переменные состояния

Состояние любой системы, в том числе термодинамической, можно определить по сочетанию ее свойств или характеристик. Все переменные, которые полностью определяются только в конкретный момент времени и не зависят от того, как именно система пришла в это состояние, называются термодинамическими параметрами (переменными) состояния или функциями состояния.

Система считается стационарной, если переменные функции с течением времени не изменяются. Один из вариантов - это термодинамическое равновесие. Любое, даже самое малое изменение в системе, - уже процесс, а в нем может быть от одного до нескольких переменных термодинамических параметров состояния. Последовательность, в которой состояния системы непрерывно переходят друг в друга, называют «путь процесса».

К сожалению, путаница с терминами все еще имеет место, так как одна и та же переменная может быть как независимой, так и результатом сложения нескольких функций системы. Поэтому такие термины, как «функция состояния», «параметр состояния», «переменная состояния» могут рассматриваться в виде синонимов.

Температура

Один из независимых параметров состояния термодинамической системы - это температура. Она представляет собой величину, которая характеризует количество кинетической энергии, приходящееся на единицу частиц в термодинамической системе, находящейся в состоянии равновесия.

Если подходить к определению понятия с точки зрения термодинамики, то температура является величиной обратно пропорциональной изменению энтропии после добавления в систему теплоты (энергии). Когда система равновесна, то значение температуры одинаково для всех ее «участников». В случае если имеется разница температур, то энергия отдается более нагретым телом и поглощается более холодным.

Существуют термодинамические системы, в которых при добавлении энергии беспорядочность (энтропия) не возрастает, а наоборот - уменьшается. Кроме того, если подобная система будет взаимодействовать с телом, температура которого больше, чем ее собственная, то она отдаст свою кинетическую энергию этом телу, а не наоборот (исходя из законов термодинамики).

Давление

Давлением называется величина, характеризующая силу, воздействующую на тело, перпендикулярно его поверхности. Для того чтобы вычислить этот параметр, необходимо все количество силы разделить на площадь объекта. Единицами измерения этой силы будут паскали.

В случае с термодинамическими параметрами газ занимает весь доступный ему объем, и, кроме того, молекулы, его составляющие, непрерывно хаотично двигаются и сталкиваются друг с другом и с сосудом, в котором находятся. Именно эти удары и обуславливают давление вещества на стенки сосуда либо на тело, которое помещено в газ. Сила распространяется во всех направлениях одинаково именно из-за непредсказуемого движения молекул. Чтобы увеличить давление, необходимо повысить температуру системы, и наоборот.

Внутренняя энергия

К основным термодинамическим параметрам, зависящим от массы системы, относят и внутреннюю энергию. Она складывается из кинетической энергии, обусловленной движением молекул вещества, а также из потенциальной энергии, появляющейся, когда молекулы взаимодействуют между собой.

Этот параметр является однозначным. То есть значение внутренней энергии постоянно всякий раз, как система оказывается в нужном состоянии, независимо от того, каким путем оно (состояние) было достигнуто.

Невозможно изменить внутреннюю энергию. Она складывается из теплоты, выделяемой системой и работы, которая ею производится. Для некоторых процессов учитываются и другие параметры, такие как температура, энтропия, давление, потенциал и количество молекул.

Энтропия

Второе начало термодинамики гласит, что энтропия не уменьшается. Другая формулировка постулирует, что энергия никогда не переходит от тела с более низкой температурой к более нагретому. Это, в свою очередь, отрицает возможность создания вечного двигателя, так как нельзя всю энергию, имеющуюся у тела, перевести в работу.

Само понятие «энтропия» было введено в обиход еще в середине 19 века. Тогда оно воспринималось как изменение количества тепла к температуре системы. Но такое определение подходит только к процессам, которые постоянно находятся в состоянии равновесия. Из этого можно вывести следующее заключение: если температура тел, составляющих систему, стремится к нулю, то и энтропия будет равна нулю.

Энтропия как термодинамический параметр состояния газа используется в качестве указания на меру беспорядочности, хаотичности движения частиц. Ее используют, чтобы определить распределение молекул в определенной области и сосуде, либо чтобы посчитать электромагнитную силу взаимодействия между ионами вещества.

Энтальпия

Энтальпия представляет собой энергию, которая может быть преобразована в теплоту (или работу) при постоянном давлении. Это потенциал системы, которая находится в состоянии равновесия, в случае если исследователю известен уровень энтропии, число молекул и давление.

В случае, если указывается термодинамический параметр идеального газа, вместо энтальпии используют формулировку «энергия расширенной системы». Для того чтобы легче было объяснить себе эту величину, можно представить сосуд, наполненный газом, который равномерно сжимается при помощи поршня (например, двигатель внутреннего сгорания). В этом случае энтальпия будет равна не только внутренней энергии вещества, но и работе, которую необходимо произвести, чтобы привести систему в необходимое состояние. Изменение данного параметра зависит только от начального и конечного состояния системы, а путь, которым оно будет получено, роли не играет.

Энергия Гиббса

Термодинамические параметры и процессы, в большинстве своем, связаны с энергетическим потенциалом веществ, составляющих систему. Так, энергия Гиббса является эквивалентом полной химической энергии системы. Она показывает, какие изменения будут происходить в процессе химических реакций и будут ли вещества взаимодействовать вообще.

Изменение количества энергии и температуры системы в процессе протекания реакции затрагивает такие понятия, как энтальпия и энтропия. Разница между этими двумя параметрами как раз и будет называться энергией Гиббса или изобарно-изотермическим потенциалом.

Минимальное значение данной энергии наблюдается в том случае, если система находится в равновесии, а ее давление, температура и количества вещества остаются неизменными.

Энергия Гельмгольца

Энергия Гельмгольца (по другим источникам - просто свободная энергия) представляет собой потенциальное количество энергии, которое будет потеряно системой при взаимодействии с телами, не входящими в нее.

Понятие свободной энергии Гельмгольца часто используется для того, чтобы определить, какую максимальную работу способна выполнить система, то есть сколько высвободится теплоты при переходе веществ из одного состояния в другое.

Если система находится в состоянии термодинамического равновесия (то есть она не совершает никакой работы), то уровень свободной энергии находится на минимуме. А значит, изменение других параметров, таких как температура, давление, количество частиц, также не происходит.

Рассмотрим особенности термодинамических систем. Под ними принято понимать физические макроскопические формы, состоящие из значительного количества частиц, которые не предполагают использования для описания макроскопических показателей каждой отдельной частицы.

Нет ограничений в природе материальных частиц, которые являются составными компонентами таких систем. Они могут быть представлены в виде молекул, атомов, ионов, электронов, фотонов.

Особенности

Проанализируем отличительные характеристики термодинамических систем. В качестве примера можно привести любой предмет, который можно наблюдать без использования телескопов, микроскопов. Чтобы дать полноценное описание такой системе, подбирают макроскопические детали, благодаря которым можно определить объем, давление, температуру, электрическую поляризацию, величину магнитной индукции, химический состав, массу компонентов.

Для любых термодинамических систем существуют условные либо реальные границы, которые отделяют их от окружающей среды. Вместо нее часто используют понятие термостата, характеризующегося такой высокой величиной теплоемкости, что в случае теплообмена с анализируемой системой температурный показатель сохраняет неизменное значение.

Классификация систем

Рассмотрим, что представляет собой классификация термодинамических систем. В зависимости от характера взаимодействия ее с окружающей средой, принято выделять:

  • изолированные виды, которые не обмениваются ни веществом, ни энергией с внешней средой;
  • адиабатически изолированные, не совершающие обмена с внешней средой веществом, но вступающие в обмен работой или энергией;
  • у закрытых термодинамических систем нет обмена веществом, допускается только изменение величины энергии;
  • открытые системы характеризуются полной передачей энергии, вещества;
  • частично открытые могут иметь полупроницаемые перегородки, поэтому не в полной мере принимать участие в материальном обмене.

В зависимости от описания, параметры термодинамической системы, могут подразделяться на сложные и простые варианты.

Особенности простых систем

Простыми системами называют равновесные состояния, определить физическое состояние которых можно удельным объемом, температурой, давлением. Примеры термодинамических систем подобного типа - изотропные тела, имеющие равные характеристики в разных направлениях и точках. Так, жидкости, газообразные вещества, твердые тела, которые находятся в состоянии термодинамического равновесия, не подвергаются воздействию электромагнитных и гравитационных сил, поверхностному натяжению, химическим превращениям. Анализ простых тел признан в термодинамике важным и актуальным с практической и теоретической точки зрения.

Внутренняя энергия термодинамической системы такого вида связана с окружающим миром. При описании используют число частиц, массу вещества каждого отдельного компонента.

Сложные системы

К сложным относят термодинамические системы, которые не попадают под простые виды. Например, ими являются магнетики, диэлектрики, твердые упругие тела, сверхпроводники, поверхности раздела фаз, тепловое излучение, электрохимические системы. В качестве параметров, используемых для их описания, отметим упругость пружины или стержня, поверхность фазового раздела, тепловое излучение.

Физической системой называют такую совокупность, в которой нет химического взаимодействия между веществами в пределах показателей температуры, давления, выбранных для исследования. А химическими системами называют те варианты, которые подразумевают взаимодействие между ее отдельными компонентами.

Внутренняя энергия термодинамической системы зависит от наличия изоляции ее с окружающим миром. Например, в качестве варианта адиабатической оболочки, можно представить сосуд Дьюара. Гомогенный характер проявляется у системы, в которой все компоненты имеют сходные свойства. Примерами их служат газовые, твердые, жидкие растворы. Типичным примером газовой гомогенной фазы является атмосфера Земли.

Особенности термодинамики

Данный раздел науки занимается изучением основных закономерностей протекания процессов, которые связаны с выделением, поглощением энергии. В химической термодинамике предполагается изучение взаимных превращений составных частей системы, установление закономерностей перехода одного вида энергии в другой при заданных условиях (давлении, температуре, объеме).

Система, являющаяся объектом термодинамического исследования, может быть представлена в виде любого объекта природы, включающего в себя большое число молекул, которые отделены границей раздела с другими реальными объектами. Под состоянием системы подразумевают совокупность ее свойств, которые позволяют определять ее с позиций термодинамики.

Заключение

В любой системе наблюдается переход одного вида энергии в другой, устанавливается термодинамическое равновесие. Раздел физики, которые занимается детальным изучением превращений, изменений, сохранений энергии, имеет особое значение. Например, в химической кинетике можно не просто описать состояние системы, но и рассчитать условия, способствующие ее смещению в нужном направлении.

Закон Гесса, связывающий энтальпию, энтропию рассматриваемого превращения, дает возможность выявлять возможность самопроизвольного протекания реакции, рассчитывать количество теплоты, выделяемого (поглощаемого) термодинамической системой.

Термохимия, базирующаяся на основах термодинамики, имеет практическое значение. Благодаря данному разделу химии, на производстве проводят предварительные расчеты эффективности топлива и целесообразности внедрения определенных технологий в реальное производство. Сведения, получаемые из термодинамики, дают возможность применять явления упругости, термоэлектричества, вязкости, намагничивания для промышленного производства различных материалов.