Чем объясняется сходство между меркурием и луной. Тяготение меркурия и проблема векового движения его перигелия

0

Ближайшая к Солнцу из девяти больших планет; на нашем небе никогда не удаляется от дневного светила больше, чем на 28°, поэтому наблюдать Меркурий с Земли особенно трудно. Время от времени планету можно различить невооруженным глазом как едва заметную светлую точку среди чарующих красок вечерней или утренней зари. В телескоп Меркурий имеет вид серпика или неполного круга, изменения формы которого по мере орбитального движения планеты наглядно показывают, что мы наблюдаем шар, освещенный с одной стороны Солнцем. В период минимальной удаленности от Земли (средний минимум 92 млн. км, минимум миниморум около 80 млн. км) Меркурий на небе земного наблюдателя бывает расположен, к сожалению, возле самого Солнца и обращен к нам своим темным (ночным) полушарием. Такие неудобства наблюдений Меркурия с наземных обсерваторий усугубляют и без того значительные трудности, связанные с малостью угловых размеров объекта, со слабостью приходящего от него энергетического потока и с помехами в земной атмосфере.

Тем не менее исследователям удается отвоевывать у природы бесценные крупицы новых знаний путем совершенствования сложнейшей аппаратуры и методики наблюдения и ценой напряженной, а подчас даже самоотверженной, работы. До 1974 г. вся информация о Меркурии (а она достаточно обширна) была получена по наземным наблюдениям.

О Меркурии написаны превосходные обзоры. Однако за последние годы некоторые сведения были уточнены. В настоящем обзоре сделана попытка изложить сведения о физике этой планеты с использованием по возможности новейших данных.

Диаметр, масса и величины, производные от них Точные знания размеров и массы планеты совершенно необходимы для нахождения ряда параметров, характеризующих физические условия на поверхности и важных для космонавтики.

Линейные диаметры всех планет, полученные из угловых диаметров, измерявшихся с Земли, являются величинами, зависящими от численного значения астрономической единицы длины. В связи с возможными уточнениями последней исторически сложилась традиция выражать диаметры планет не в линейной мере, а в угловых секундах на расстоянии 1 а. е.

Результаты измерений экваториального диаметра Меркурия заключены в пределах от 6",2 до 6",9, т. е. согласуются между собой с точностью далеко не астрономической. Новые измерения дают 6",73 ±0",03, что соответствует величине 4882 ±30 км, тогда как применение метода Герцшпрунга показало D>6",79, т. е. D>4920 км.

Лучший метод нахождения массы любой планеты основан на использовании периодов обращения ее спутников. Поскольку у Меркурия таковых нет, для вычисления его массы используют трудно наблюдаемые эффекты гравитационного взаимодействия с другими небесными телами.

Отношение масса Солнца/масса планеты близко к 6,0*10 6 .

По данным о значениях массы и диаметра средняя плотность оценивается в пределах от 5,30 до 5,46.

Из оценок массы и диаметра планеты легко находятся ускорение силы тяжести и параболическая (вторая космическая) скорость на уровне поверхности; первая величина составляет около 38% от значения для Земли, а вторая - приблизительно 4,3 км/сек.

Первые опыты исследования Меркурия автоматическими приборами из космоса были осуществлены с борта космического аппарата «Маринер-10» (США) 29 марта и 21 сентября 1974 г. На Землю переданы изображения поверхности планеты. Из ра-диозатменных измерений выведена величина радиуса Меркурия, составляющая на широте 2°N 2440 ±2 км, а на широте 68°N - 2438 ±2 км. Анализ трассовых данных позволил уточнить массу Меркурия, которая составляет в единицах отношения массы Солнца к массе планеты 6 023 600 ±600. Новое значение средней плотности планеты 5,44 г*см -3 .

Высокую среднюю плотность Меркурия (по сравнению с плотностью вещества в земных недрах на уровне соответствующего давления) объясняют обилием тяжелых элементов. В составе Меркурия, по-видимому, преобладает железо. Вывод о высоком содержании железа и, следовательно, об ограниченном содержании силикатов приводит к допущению о значительно более низком содержании радиоактивных веществ в Меркурии, чем в веществе хондритовых метеоритов. Между тем известно, что распад радиоактивных элементов, содержащихся именно в силикатах, является одной из причин разогревания планетных недр. Значит, термическая история и современное состояние недр Меркурия в значительной мере зависят от среднего химического состава. Кроме того, следует учитывать дополнительные факторы, которых мы не знаем. К ним относятся скорость конгломерации планеты из вещества протопланетного облака, обилие и состав радиоактивных элементов в этом веществе, лучистая энергия, получаемая извне на ранних этапах эволюции. Проведенные С. В. Маевой расчеты термической истории Меркурия показали, что на всех этапах эволюции температура в недрах планеты никогда не достигала значения, необходимого для расплавления силикатного вещества или железа. Расслоение вещества по удельному весу (гравитационная дифференциация) в твердых недрах планеты происходит значительно медленнее, чем в случае расплавления. Тем не менее некоторые специалисты допускают, что Меркурий может иметь ядро, Различные модели внутреннего строения Меркурия рассмотрены и модели с однородным распределением металлического железа и с его сегрегацией в ядро.

Поверхность Меркурия . Фотометрические свойства и современные данные о рельефе

Поверхность Меркурия, освещенная солнечными лучами, кажется яркой, но измерения показали, что она довольно темная, точнее - темно-бурая. Визуальное альбедо Бонда 3 для Меркурия равно 0,056 а интегральное 0,09. Средняя яркость дневной поверхности резко возрастает с приближением угла фазы к нулевому значению. Кривые изменения яркости в зависимости от угла фазы для Меркурия и Луны практически совпадают. Спектральная отражательная способность увеличивается с возрастанием длины волны по крайней мере до 1,6 мкм. Приведенные к нулевой фазе результаты измерений спектральной отражательной способности Меркурия в диапазоне от 0,32 до 1,05 мкм изображены на рис. 1, заимствованном из работы. Кривая отражательной способности Меркурия сходна с таковой для гористых и морских участков поверхности Луны и отличается от кривых для дна лунных кратеров. Исходя из этих результатов, Мак-Корд и Адамс пришли к заключению, что поверхность Меркурия покрыта, вероятно,


луноподобным твердым веществом, богатым темными вулканическими стеклами, например пироксеном. Причиной низкого альбедо может быть большое содержание в минералах железа и титана.

При исключительно благоприятных условиях, которые случаются довольно редко, на

поверхности Меркурия в телескоп можно заметить темные и светлые пятна.

Неоднократно предпринимались попытки составить карту Меркурия. Исторические карты мы здесь рассматривать не будем, поскольку их составители пользовались ошибочными данными о периоде осевого вращения планеты. Новые попытки составить карту Меркурия на основе современных представлений были предприняты Камишелем и Дольфюсом и Крукшенком и Чепменом. Более современная, улучшенная карта деталей поверхности Меркурия с указанием координат избранных деталей была составлена в 1972 г. Мюрреем, Смитом и Дольфюсом по материалам фотографических и визуальных наблюдений за 1942- 1970 гг. в астрономических обсерваториях Пик-дю-Миди (Франция) и Нью-Мехико (США).

Эта карта изображена на рис. 2. Долготы даются в новой системе отсчета, рекомендованной на 14-й сессии Международного астрономического союза (Брайтон, 1970). По заключению составителей карты видимый контраст деталей на поверхности Меркурия несколько меньше, чем в случае контрастов море - материк на Луне. Возможно, что уменьшение контраста связано с размыванием изображений темных деталей при наблюдениях Меркурия, так как угловое разрешение получается в 300 раз худшее, чем при наблюдениях Луны. Область между 350 и 90° термографической долготы, занимающая более четверти поверхности планеты, практически лишена больших контрастных деталей.

Авторы работы отмечают, что детали на поверхности Меркурия оставались неизменными на протяжении более чем 30-летнего периода наблюдений и появление атмосферной дымки в каких-либо областях планеты не обнаружено.

Исследования рельефа поверхности Меркурия выходят за пределы возможностей оптических методов современной наземной астрономии. В последнее десятилетие для изучения поверхности ближайших планет с успехом используют радиолокацию. Возможности радиолокации планет возрастают как в результате совершенствования аппаратуры, так и вследствие применения новой методики анализа данных. Однако Меркурий является очень трудным объектом исследо

ваний, поскольку принимаемый от него сигнал радиоэхо имеет мощность, приблизительно в 100 раз меньшую, чем от Венеры.

До 1970 г. группа исследователей Массачусетского технологического института безуспешно пыталась использовать двумерные радарные спектры (время задержки и частота) для оценки профиля поверхности Меркурия. Слабость отраженного сигнала не позволила выделить заметные детали рельефа или найти отклонения поверхности Меркурия от поверхности сферы. Два более успешных эксперимента по радиолокации Меркурия были проведены в 1970-1971 гг. в Голдстоуне Лабораторией реактивных двигателей Калифорнийского технологического института на волне 12,5 см и в Хайстеке Массачусетским технологическим институтом на волне 3,8 см. Была достигнута чувствительность, достаточная для изучения характеристики рассеяния. И функция рассеяния и поляризация излучения на волне 12,5 см показали, что поверхность Меркурия в значительной мере занята мелкими неровностями. По измерениям на волне 3,8 см в нескольких наблюдавшихся участках экваториальной области планеты средняя величина уклонов найдена равной приблизительно 10°. Эта величина заметно изменяется с долготой. На Меркурии наблюдались топографические детали с вариациями радиуса планеты порядка 1-3 км.

Радиолокация позволила измерить «коэффициент отражения» планеты в микроволновом диапазоне; он оказался примерно таким же, как у Луны. Поперечник рассеяния Меркурия изменялся во время наблюдений в пределах от 4 до 8% от оптического поперечника.

Параметры осевого (суточного) вращения планеты.

Неоднократно предпринимались попытки найти период осевого вращения планеты по наблюдениям пятен на поверхности. Но старые визуальные наблюдения приводили к ложному выводу о том, что Меркурий повернут к Солнцу всегда одним и тем же полушарием, т. е. к выводу о равенстве сидерического периода осевого вращения и сидерического периода обращения по орбите (87,97 суток). Такое ошибочное мнение сохранялось вплоть до открытия Петтенджила и Дайса, которые по данным радиолокационных исследований нашли, что сидерический период осевого вращения Меркурия равен 59 ±3 суток. Впоследствии это значение уточнялось. Таким образом, на самом деле Меркурий вращается, но столь медленно, что его осевое вращение трудно заметить в течение короткого промежутка времени, благоприятного для визуальных наблюдений. Многие авторы объясняют долгую жизнь ошибочной гипотезы синхронного вращения планеты «роковой» квазисоизмеримостью периода этого вращения с периодом наступления условий, наиболее благоприятных для наблюдения Меркурия (для одной астрономической обсерватории за пределами тропического пояса - только с таким уточнением утверждение будет справедливо). Необходимое стечение обстоятельств повторяется через три синодических периода, т. е. через 348 суток, а за это время Меркурий успевает повернуться приблизительно на целое число оборотов как по отношению к Солнцу, так и к Земле. В таком случае видимое размещение деталей на диске планеты и положение подсолнечной точки среди них воспроизводятся с мало заметными изменениями.

Впрочем, именно оптические наблюдения помогли уточнить период вращения Меркурия после его грубой, но надежной оценки радарным методом. Камишель и Дольфюс на основе обработки архивов обсерватории Пик-дю-Миди за 1942-1966 гг. нашли период равным 58,67 ±0,03 суток. Смит и Риис также использовали многолетние фотографические архивы и получили период вращения 58,663 ±0,021 суток. Точность радарных наблюдений непрерывно улучшается и заметно приблизилась к точности оптических методов. Новые радарные наблюдения дают период, равный 58,65 суток, с ошибкой не более 0,4%.

Мюррей, Смит и Дольфюс дополнили прежние архивы фотоснимков и зарисовок Меркурия новыми оптическими наблюдениями на обсерваториях Пик-дю-Миди и Нью-Мехико и получили период вращения равным 58,644 ±0,009 суток. Направление оси вращения планеты найдено перпендикулярным плоскости орбиты с вероятным отклонением не более 3°.

Период осевого вращения Меркурия - величина не случайная: промежуток времени 58,6462 суток составляет в точности 2 /з от орбитального периода Меркурия. Это интересный вариант резонанса в спиновых колебаниях, вызванных действием гравитации Солнца на планету, внутри которой размещение массы нельзя считать строго концентрическим. Вращение с периодом 2 /з периода обращения должно быть устойчивым: малая ось эллипсоида инерции планеты при каждом возвращении Меркурия в точку перигелия бывает ориентирована вдоль направления к Солнцу. В работе показано, что для возникновения спиново-орбитально-го резонанса 3/2 требуется величина сжатия эллипсоида инерции в плоскости экватора (В - А)/C>10 -5 , т. е. весьма незначительная.

Атмосфера Меркурия

Дольфюс на основе измерений поляризации рассеянного планетой света в различных участках спектра нашел атмосферное давление у поверхности Меркурия близким к 1 мб. Мороз получил оценку такого же порядка величины (содержание С0 2 , равное 0,З:7,0 г/см 2) по избытку поглощения над теллурическим в полосе CO2 около 1,6 мкм в спектре Меркурия. Однако попытка Биндера и Крукшенка повторить измерения Мороза дала отрицательный результат. Что касается особенностей поляризации Меркурия, то О’Лири и Ри объясняют их одними только свойствами поверхности, без привлечения атмосферных эффектов.

В работе Белтона и др. по измерениям в полосе 1,05 мкм был найден верхний предел содержания СО2 на Меркурии, равный 5 м*атм (парциальное давление у поверхности менее чем 0,35 мб), а Бергстрал и др. по наблюдениям полосы около 1,20 мкм оценили, что верхний предел не превосходит 0,58 м*атм (парциальное давление приблизительно 0,04 мб). Эти данные ставят под сомнение наличие СО2 на Меркурии.

Чтобы молекулы газа не диссипировали с Меркурия, они должны быть, во-первых, достаточно тяжелыми, а во-вторых, устойчивыми к диссоциации под действием солнечного излучения. Этим критериям удовлетворяет достаточно распространенный в солнечной системе Аr 40 . Наблюдения не Исключают аргоновую атмосферу с давлением у поверхности Меркурия в пределах 1 мб, но ее существование - только гипотеза.

Сходство фотометрических свойств поверхности Меркурия и Луны может служить аргументом (правда, не очень убедительным) в пользу предположения, что поверхность Меркурия подвергалась воздействию солнечного ветра. Исходя из этого, Саган и О’Лири и Ри определи верхний предел атмосферного давления у поверхности планеты равным приблизительно 10 -5 мб, Белтон, Хантен и Мак-Элрой на основе вычислений темпа диссипации получили верхний предел близким к 10 -6 мб. Бенкс и др. , обсудив различные возможные модели атмосферы Меркурия, допускают существование там экзосферной модели, состоящей из Не 4 , Ne 20 и Аr 40 с верхним пределом суммарного обилия 2-10 14 частиц в столбе с единичным сечением. Структура такой модели определяется солнечным ветром.

Ультрафиолетовый эксперимент на «Маринере-10» подтвердил, что Меркурий окружен тонкой атмосферой с полным давлением у поверхности не более 2 * 10 -9 мбар. Установлены верхние пределы обилия различных газов. Наиболее обильными компонентами могут быть Ne, Аr, Хе. Среди других газов обнаружен, в частности, Не, парциальное давление которого у поверхности составляет 2*10 -12 мбар.

Условия инсоляции и температура на поверхности

Определяемая совместным действием вращения и обращения длительность одних солнечных суток на Меркурии равна в точности трем звездным меркурианским суткам или двум меркурианским годам и составляет около 176 наших дней, т. е. средних солнечных суток всемирного времени. Солнце на небе Меркурия движется с востока на запад неравномерно и заметно меняет видимые размеры вследствие эксцентриситета орбиты и периодических изменений гелиоцентрической угловой скорости планеты. Дважды за одни солнечные сутки (а именно - в каждом перигелии) видимые размеры Солнца увеличиваются, и оно приостанавливается, затем его движение приблизительно на сотню часов сменяется на попятное, после чего Солнце вновь приостанавливается и берет курс на запад.

Количество солнечной энергии, получаемой в единицу времени единичной площадкой, перпендикулярной солнечным лучам (так называемая солнечная постоянная, равная 2,00±0,04 кал/см 2 * мин на верхней границе земной атмосферы), на Меркурии в перигелии приблизительно вдвое больше, чем в афелии и в 10 раз больше, чем на Земле, т. е. достигает 14 квт/м 2 . При этом на различных термографических долготах экватора суточный цикл освещения неодинаков. Около долгот 0 и 180° Солнце в верхней кульминации имеет максимальные угловые размеры и движется в небе очень медленно, тогда как около долгот 90 и 270° оно в полдень имеет наименьшие угловые размеры и пересекает небосклон сравнительно быстро, замедляя движение только у горизонта.

Дневное нагревание поверхности уменьшается с ростом широты места вплоть до полюсов вращения. Интересно заметить, что на самых полюсах могут быть условия непрерывного или почти непрерывного освещения: Солнце движется вдоль математического горизонта с периодичностью 176 суток, при этом центр Солнца погружается под горизонт каждые 38 суток на величину, равную наклону экватора планеты к орбите (наклон меньше, а может быть, значительно меньше 3°); верхний край Солнца если и скрывается, то ненадолго, так как глубина погружения центра под линию математического горизонта приблизительно равна радиусу Солнца, видимого с Меркурия.

С большой длительностью дня и ночи на Меркурии связано резкое различие температуры полуденных и полуночных участков поверхности, а близость планеты к Солнцу и низкое альбедо приводят к сильному нагреванию поверхности в течение дня.

Температура Меркурия найдена по измерениям собственного теплового излучения планеты в той части инфракрасного диапазона, где вклад отраженного солнечного излучения пренебрежимо мал. На среднем расстоянии от Солнца яркостная температура поверхности в подсолнечной точке Меркурия соответствует планковскому излучению абсолютно черного тела при температуре Т в = = 613° К. Цветовая температура (по отношению интенсивности при l 2,2 и 3,4 мкм) в перигелии T с = 670±20° К.

С наиболее значительными техническими трудностями связана инфракрасная термометрия темной стороны Меркурия, так как требует, помимо высокого углового разрешения аппаратуры и кроме идеальных атмосферных условий, также надежной защиты аппаратуры от излучения серпа дневного полушария планеты и особенно высокой чувствительности детектора. Тем не менее такие измерения удалось выполнить. Мардок и Ней в диапазоне 3,75-12,0 мкм нашли температуру поверхности на ночной стороне 111 ±3° К. Таким образом, амплитуда суточных колебаний температуры на Меркурии превышает 500° К.

Инфракрасным радиометром на «Маринере-10» было измерено тепловое излучение планеты в полосе спектра около 45 мкм при минимальных размерах наблюдаемого элемента поверхности 40 км. В околоэкватори-альном скане наиболее низкая яркостная температура зарегистрирована около местной полуночи и составляет 100° К. Закон понижения температуры после захода Солнца такой же, как в случае однородного пористого материала с тепловой инерцией 0,0017 кал * см -2 *сек -72 *‘’К -1 с флуктуациями этой величины до 0,003 в отдельных районах.

Современные наблюдения теплового излучения Меркурия не ограничиваются инфракрасным диапазоном. Ведутся радиоастрономические измерения в микроволновом диапазоне, которые позволяют определить тепловой режим подповерхностного слоя планеты на различных глубинах и найти физические свойства наружного покрова планеты.

Чем больше длина волны принимаемого излучения, тем большая глубина ответственна за его происхождение. Глубина проникновения электромагнитных колебаний (т. е. толщина радиоизлучающего слоя) l э =1/x, где x (l) - коэффициент поглощения электромагнитной волны l - длина волны. Не менее важно для нас другое выражение той же величины: l Э =fl Т, где f- коэффициент, зависящий от свойств вещества, l Т - глубина проникновения температурной волны, определяемая уменьшением амплитуды колебаний температуры в е раз по сравнению со значением на поверхности. На глубине, в 3-4 раза превышающей l T , колебания температуры практически отсутствуют. Этим определяется толщина слоя породы, прогреваемого Солнцем в течение дня. Теория вопроса детально изложена в работе.

Температура, измеренная в микроволновом диапазоне, зависит от соотношения между толщиной прогреваемого Солнцем слоя породы и толщиной радиоизлучающего слоя.

Обзоры результатов радиометрических наблюдений Меркурия на волнах от 0,19 до

11,3 см. Численные значения теплофизических параметров Меркурия приведены в конце этого раздела.

Теплофизическое поведение наружного покрова планеты говорит о его чрезвычайно низкой теплопроводности. Амплитуда суточных колебаний температуры на некоторой глубине, как и следовало ожидать, получается существенно меньше, чем по измерениям в инфракрасном диапазоне. Данные микроволновых радиоастрономических наблюдений показывают, что усредненная по всему видимому диску Меркурия яркостная температура изменяется и с углом фазы i, и с долготой L центра диска, а также зависит от отношения глубин проникновения электрической и тепловой волн. Наиболее полные результаты наблюдений, обработанные по методу наименьших квадратов, представляются следующими выражениями:

где l - длина волны электромагнитного излучения, i - угол Солнце - планета - Земля, L - термографическая долгота в системе долгот. Положение нулевого меридиана в этой системе отличается от его положения в принятой в 1970 г. системе Международного астрономического союза.

Значительные различия между выражениями температуры на миллиметровых и сантиметровых волнах нельзя объяснить одним только отличием эффективной глубины излучающего слоя. Касаясь применения к Меркурию теории радиоизлучения, разработанной для Луны, Гэри указал на необходимость учета в данном случае температурной зависимости теплофизических параметров.

Моррйсон выполнил расчеты усредненных яркостных температур Меркурия в различных диапазонах теплового излучения в функции фазового угла и положения на орбите и с учетом зависимости теплопроводности от температуры.


Вопрос о сходстве некоторых свойств наружного слоя Меркурия и Луны

Сопоставление результатов только что упомянутых расчетов c результатами наземных наблюдений позволило Моррисону выбрать наиболее вероятные значения парамет-

ров, характеризующих тепловые и электрические свойства внешнего слоя Меркурия: плотность р=1,5±0,4 г/см 3 ; тепловая инерция l= (крс) 1/2 = (15 ±6). * 10 -6 кал/см 2 * сек 1/2 * град, что заметно отличается от значения, полученного по данным «Маринера-10»;

параметр f/l=0,9±0,3 см -1 , где f - отношение глубин проникновения тепловой и электрической волн, l - длина волны; коэффициент теплопроводности k=(4 ±2) *10 2 кал/см*сек*град; глубина проникновения тепловой волны l T =11±6 см; диэлектрическая постоянная e=2,9 ±0,5; тангенс угла потерь tg А = (0,9 ±0,4) *10 -2 . Сходство характеристик Меркурия и Луны позволяет допустить отсутствие резких различий в структуре их наружного слоя. Однако в вопросе о сходстве минерального состава их поверхности следует проявлять осторожность. До тех пор, пока мы не имеем экспериментальных данных о составе поверхности Меркурия, наши представления об этом сильно зависят от решения другой проблемы: подвергалась ли планета внутреннему расплавлению и гравитационной дифференциации? Луна, как известно, содержит в наружных слоях продукты расплавления недр. Высокая средняя плотность Меркурия приводит к построению моделей его внутреннего строения, которые, по-видимому, не могли подвергнуться расплавлению. Возможно, что внешнее сходство поверхности Меркурия с Луной в значительной мере обусловлено сходством процессов переработки минералов в реголит внешними факторами.

Таковы основные современные представления о природе Меркурия. Дальнейший рост уровня наших знаний в этой области науки возможен, видимо, только путем проведения новых исследований.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

– самая маленькая среди планет, в солнечной системе. Меркурий с большой скоростью вращается вокруг светила.

Большая часть информации об этой планете была получена космическим аппаратом “Маринер-10” в 1974г. Это единственный зонд, посланный с целью изучения планеты Меркурий.

Поверхность планеты

Фотографирование Меркурия “Маринером-10” показало, что поверхность планеты усыпана кратерами. На первый взгляд создаётся впечатление что рельеф Меркурия имеет сходство с Луной. На нём просматриваются пространства, напоминающие лунные плоскогорья, рядом можно увидеть равнину без возвышенностей с небольшим количеством кратеров. Это напоминает моря спутника нашей планеты.

Хорошо на планете образовались гладкие пространства. Скорее всего этому послужило выброс горячих пород из недр планеты. Наиболее часто на рельефе Меркурия встречаются крупные уступы. Ими буквально изрезаны сотни километров поверхности. Высота таких уступов колеблется от нескольких сотен метров до 3км максимально. Появление таких геологических структур можно рассматривать в следствии разлома коры, произошедшего из-за резкого охлаждения и последующим за тем потеплением планеты. Всё это происходило во время формирования Меркурия.

В недрах планеты

Магнитное поле Меркурия слабое, его напряжённость составляет 1/100 напряжённости поля Земли. Кора и мантия тонкие. Плотность высокая, превышает 5г/см3, так же как и на Земле. Это значит, что планета в основном состоит из тяжёлых элементов. Предполагается, что почти 70% массы составляет железосодержащее ядро, оно занимает три четверти радиуса планеты. Таким образом, находит объяснение факт существования магнитного поля, хотя не совсем понятно как именно оно возникло. Может быть, расплавленный металл, находящийся внутри ядра действует как генератор постоянного тока. То же происходит и в недрах Земли. Вряд ли планета с момента своего образования имело железосодержащее ядро таких размеров. Скорее всего, большая часть мантии откололась во время катастрофической по силе коллизии с другим небесным телом, произошедшим в самом начале существования Солнечной системы.

Орбита Меркурия

Орбита меркурия находится примерно на расстоянии 58 миллионов км. от Солнца. Она имеет форму эксцентрика. Следует иметь в виду, что по мере движения по орбите расстояние до Солнца меняется до 24 миллионов км. Скорость вращения Меркурия равна примерно 48км/c Причем она зависит от положения планеты: в афелии Меркурий движется со скоростью 38,7 кс/с, а в перигелии – 56,6 км/с.

В связи с тем что Меркурий занимает положение между Землёй и Солнцем, его фазы имеют много общего с лунными. Находясь в точке, самой близкой к Земле, он имеет вид тонкой половинки Луны, на максимальной удалённости от нашей планеты большая половина его поверхности хорошо освещена. Из за близости к Солнцу практический невозможно увидеть полную фазу Меркурия, плоскость орбиты Меркурия имеет наклон 7 градусов по отношению к плоскости Земли, и во время прохождения между Солнцем и Землёй она отклоняется к северу или к югу от Солнца. Примерно 14 раз в сто лет Меркурий проходит перед Солнцем, это называется “транзит”

День и ночь

Меркурий очень медленно вращается вокруг собственной оси.
Во время полного обращения по орбите вокруг Солнца Меркурий всего полтора раза совершает вращение вокруг своей оси. Солнечные сутки на планете (имеется в виду не вращение вокруг оси, а период от одного до второго появления Солнца) составляет два меркурианских года.

Из-за медленного движения во круг своей оси, полушарие Меркурия обращено к Солнцу в течении долгого времени, в связи с этим разница между днём и ночью выражена значительно меньше, чем на других планетах Солнечной системы. Ночью температура на полушарии, противоположном Солнцу, опускается до -180 градусов, но, когда планета находится в афелии, в “послеобеденное время” она поднимается до +430 градусов C. Так как ось вращения почти перпендикулярна к плоскости орбиты, на Меркурий не существует смены времён года, как на Земле. Рядом с полюсами есть места, куда не когда не проникает Солнечный свет.

Смотрите также:

Венера

– вторая по расстоянию от Солнца и ближайшая к Земле планета Солнечной системы. Это самое яркое светило на небе (после Солнца и Луны) и в сумерках, и утром.О существовании Венеры люди знали с незапамятных времён, но впервые за фазамиВенера этой планеты наблюдал Галилей при помощи подзорной трубы. Первые наблюдатели через телескоп отметили на своих рисунках высокие горы...

Много веков среди астрономов бытовала поговорка: «Счастлив астроном, видевший Меркурий». Говорят, что этого счастья был лишен даже Коперник, которому за всю его долгую жизнь ни разу не удалось наблюдать Меркурий.

Причина плохой видимости Меркурия общеизвестна: Меркурий близок к Солнцу. Только 58 млн. км отделяет эту планету от центрального тела нашей солнечной системы, что составляет около 2/s расстояния от Земли до Солнца. Впрочем, эта величина средняя. Благодаря сильной вытянутости орбиты Меркурий может иногда сближаться с Солнцем до 46 млн. км, между тем как в иные моменты его расстояние от Солнца возрастает до 70 млн. км.

На небе Меркурий всегда находится в непосредственном соседстве с Солнцем и потому почти постоянно скрыт в его ослепительных лучах. Только при наиболее благоприятном стечении обстоятельств Меркурий удаляется от Солнца на 28 градусов, что составляет 56 видимых поперечников Луны. В такие периоды его иногда удается наблюдать в лучах утренней или вечерней зари как желтоватую сравнительно яркую звездочку.

Новый этап в изучении Меркурия наступил лишь в 1974 г., когда американская межпланетная станция «Маринер-10» трижды пролетела вблизи Меркурия и передала на Землю многочисленные изображения поверхности планеты. Сходство с Луной оказалось поразительным. Лишь специалист-селенолог (да и то не всегда) сможет различить, какое именно космическое тело изображено на снимках - Луна или Меркурий.

Выяснилось, что Меркурий вовсе не обращен к Солнцу всегда одной и той же стороной, как думали многие, а вращается вокруг оси с периодом 58 суток. Эта ось почти перпендикулярна к плоскости меркурианской орбиты, а так как сутки на Меркурии составляют почти 2/3 меркурианского года, видимое движение Солнца на Меркурии должно быть очень необычным. Сочетание двух движений приводит к тому, что в некоторых районах Меркурия восходы и заходы происходят дважды за сутки, причем как на востоке, так и на западе. Двигаясь по меркурианскому небу, Солнце иногда останавливается, затем идет вспять, а потом, как бы «одумавшись», продолжает прежнее движение.

В полдень на экваторе Меркурия температура поднимается до 400-500 °С, а ночью падает до - 160°С. Такие резкие температурные контрасты объясняются почти полным отсутствием атмосферы. Строго говоря, «Маринер-10» обнаружил на Меркурии атмосферу, но плотность ее в 500 млрд. раз меньше плотности комнатного воздуха. Состоит она из гелия и водорода, атомы которых поставляет Солнце через «солнечный ветер» (т. е. потоки протонов и альфа-частиц, непрерывно выбрасываемых Солнцем). Заметим, что водорода в атмосфере Меркурия в 50 раз меньше, чем гелия, и вся эта сверхразреженная атмосфера находится в состоянии динамического равновесия: из-за малой силы тяготения атомы атмосферы постоянно теряются Меркурием, но на смену им из «солнечного ветра» поступают новые протоны, альфа-частицы и электроны.

При внимательном изучении снимков Меркурия можно заметить, что его поверхность кое в чем все-таки отличается от лунной. Здесь, на Меркурии, почти всюду виден материковый рельеф и есть лишь одно «море», названное Морем Зноя. Есть на Меркурии и особые, не встречающиеся на Луне формы рельефа - так называемые эскарпы. Это обрывы высотой 2-3 км и длиной в сотни и тысячи километров, разделяющие два в целом ничем не отличающихся друг от друга участка поверхности. Создается впечатление, что такие сбросовые образования, вероятно, возникли при эволюционном сжатии Меркурия.

Ряд фактов свидетельствует о том, что, как и Луна, Меркурий первоначально находился в очень горячем, расплавленном состоянии. На снимках Меркурия видны многочисленные следы излияния лав; возможно, что вулканическая активность Меркурия и сейчас высока.

О химическом составе поверхностных слоев Меркурия и его недр можно пока судить лишь по косвенным данным. Отражательная способность меркурнанского реголита (поверхностного слоя) свидетельствует о том, что он состоит из таких же пород, как и лунный грунт. Средняя плотность Меркурия (5,44 г/см3) достаточно высока, и это означает, что Меркурий обладает горячим, расплавленным железоникелевым ядром, которое составляет 62% всей его массы. Радиус этого ядра близок к 1840 км, и таким образом Меркурий по своему строению напоминает Землю.

Ядро Меркурия окружено силикатной оболочкой толщиной около 600 км, поверхностные слои которой имеют плотность, как и у Луны (3,0-3,3 г/см3). Вообще сходство этих двух космических тел настолько велико, что если бы кто-то подменил Луну Меркурием, земляне этого, вероятно, не заметили бы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Далекие “Земли”

Характеристика Меркурия

Наблюдения ученых за планетой Меркурий

Рельеф поверхности Меркурия

Меркурий - мир жара и холода

1. Далекие “Земли”

С древнейших времен люди знали те особые светила на небе, которые называются планетами. По внешнему виду они похожи на звезды, но отличаются от них тем, что непрерывно кочуют по небу, перемещаясь из одного созвездия к другому. Пути их сложны. Если нарисовать на звездной карте путь какой-нибудь планеты, то получится линия с какими-то непрерывными петлями и изгибами. Планета движется сначала справа налево все вперед и вперед. Потом останавливается и помедлив, поворачивает назад. Пройдя немного в обратную сторону, она снова направляется вперед, и движется все быстрее и быстрее до новой остановки.

Древние ученые настойчиво стремились разгадать это странное движение планет, но не смогли этого сделать. Мы теперь знаем, что их попытки были неудачны потому, что они ошибочно считали Землю неподвижным центром всего мироздания.

Солнце вместе с планетами спутниками планет составляет солнечную или планетную систему. Путь каждой планеты приблизительно окружность, по которой эта планета обходит Солнце. У каждой планеты есть свой путь, или своя Орбита, как говорят астрономы.

Чем ближе планета к Солнцу, тем меньше ее орбита, тем короче тот путь, который ей приходится пробегать. Кроме того, близкая от Солнца планета движется по своему пути быстрее, чем далекая, поэтому и время оборота планеты вокруг Солнца тем короче, чем ближе она к Солнцу.

Заметив планеты очень давно, люди придумали для них названия, которые сохранились до наших дней. Не понимая действительной причины движения планет, люди объясняли планет желаниями и капризами тех богов и богинь из религиозных сказок - мифов. Так попали на страницы современных научных книг по астрономии такие имена древнеримских богов, как Меркурий - бог торговли, Венера - богиня красоты, Марс - бог войны и др.

2. Меркурий и его данные

Меркурий, самая близкая к Солнцу планета солнечной системы, астрономический знак.Среди больших планет имеет наименьшие размеры: ее диаметр 4865 км (0,38 диаметра Земли), масса 3,304*10 23 кг (0,055 массы Земли или 1:6025000 массы Солнца); средняя плотность 5,52 г/см 3 . Меркурий принадлежит к планетам земной группы.

Меркурий движется вокруг Солнца в среднем на расстоянии 0,384 астрономические единицы (58 млн. км) по эллиптической орбите с большим эксцентриситетом е-0,206; в перигелии расстояние до Солнца составляет 46 млн.км., а в афелии 70 млн. км. Период обращения Меркурия вокруг Солнца равен 88 суткам. Лишь в 60-х гг. с помощью радиолокационных наблюдений было установлено, что Меркурий вращается вокруг оси в прямом направлении (т.е. как и в орбитальном движении) с периодом 58,65 суток (относительно звезд). Продолжительность Солнечных суток на Меркурии составляет 176 дней. Угловая скорость осевого вращения Меркурия составляет3/2 орбитального и соответствует угловой скорости его движения в орбите, когда планета находится в перигелии. На основании этого можно предположить, что скорость вращения Меркурия обусловлена приливными силами со стороны Солнца.

Для наблюдения с Земли Меркурий - трудный объект, так как он видимым образом никогда не удаляется от Солнца больше чем на 23 о, вследствие чего Меркурий приходится наблюдать всегда на фоне вечернее или утренней зари низко над горизонтом. Кроме того, в эту пору фаза планеты (т.е. угол при планете между направлениями на Солнце и на Землю) близка к 90 0 и наблюдатель видит освещенной лишь половину ее диска. По этой причине на поверхности Меркурия зафиксированы лишь крупные темные пятна неизвестной природы и карта его построена в самых общих чертах. Экватор Меркурия наклонен к плоскости его орбиты на 7 0 . При наблюдениях в элонгации (в наибольшем угловом удалении от Солнца) Меркурий имеет блеск от - 0,3 до +0,6 звездной величины. Изменения блеска с фазой у Меркурия протекает сходно с Луной. Что указывает на одинаковый характер неровностей у этих небесных тел, но отражательная способность Меркурия хуже, чем у Луны: она подобна лунным морям. Его сферическое альбедо равно: визуальное 0,058, тепловое 0,09. Определенное радиолокационным путем в дециметровом диапазоне радиоволн поперечное сечение диска Меркурия составляет всего лишь 0,06 от геометрического.

Меркурий, возможно, лишен атмосферы, хотя поляризационные и спектральные наблюдения указывают на наличие слабой атмосферы. Признаки углекислого газа СО 2 наблюдались на Меркурии спектральным путем. Самый верхний предел его содержания 4 г/см 2 . Сюда может примешиваться азот N 2 или аргон Ar, не обнаружены спектроскопически при наблюдении с Земли. Содержание этих газов может быть в несколько раз выше, чем СО 2 . В верхней атмосфере Меркурия углекислый газ должен диссоциировать под воздействием сильного ультрафиолетового облучения со стороны Солнца на СО, О, О 2 . Здесь атомы и молекулы могут легко уходить в межпланетное пространство, т.к. вторая космическая скорость на Меркурии очень невелика 4,3 км/сек.

Расчетная средняя температура Меркурия (найденная в предположении, что планета столько же излучает тепла сколько получает его от Солнца) на среднем расстоянии от Солнца 505К. Для точки поверхности Меркурия, где Солнце видно в зените (т.к. подсолнечная точка) вычисленная температура 618К, а фактически измеренная 613 К. Это температура увеличивается до 400К, когда Меркурий находится в перигелии и опускается до 500К в афелии. Измеренное с большими трудностями инфракрасное излучение с неосвещенной части Меркурия приводит к значению ночной температуры Меркурия около 110К. Возможно, что она несколько выше, но вряд ли выше 150К. При изменении теплового потока Меркурия в радиодиапазоне обнаруживаются в среднем (по диску) температуры до 400К в сантиметровом диапазоне, 300-400К на миллиметровых и дециметровых волнах. Но эти измерения относятся не к сомой поверхности, а к некоторому (неглубокому) уровню под ней, что подтверждается также отсутствием заметного эффекта фазы в измеряемых тепловых потоках. Сопоставление с потоками, измеренными в инфракрасном диапазоне, позволяет вывести значение коэффицента температуропроводиости µ=1/500-1/700, что соответствует аналогичным значениям для Луны. Предполагается, что Меркурий состоит из железного (по-видимому, жидкого) ядра, содержащего 0,62 всей массы, окруженного силикатной оболочкой. С помощью “Маринера-10” было установлено присутствие у Меркурия сильно разряженной газовой оболочки, состоящей главным образом из гелия. Давление у поверхности планеты примерно в 500 млрд. раз меньше, чем у поверхности Земли. Эта атмосфера состоит в динамическом равновесии: каждый атом гелия находится в ней около 200 дней, после чего покидает планету, его же место занимает другая частица из плазмы солнечного ветра. Оказалось также, что Меркурий обладает слабым магнитным полем, напряженность которого составляет всего 0,7% земного. Наклон оси диполя к оси вращения Меркурия 12 0 (у Земли 11 0)

3. Наблюдения ученых за планетой Меркурий.

Меркурий - четвертая по блеску планета: в максимуме она почти так же ярка, как Сириус, ярче же бывают только Венера, Марс, Юпитер. Тем не менее Меркурий очень трудная для наблюдения планета из-за малости его орбиты и, следовательно, близости к Солнцу; его наибольшая элонгация (видимое угловое расстояние от Солнца) составляет 28 0 . В том самом благоприятном для наблюдения положении фаза Меркурия соответствует фазе Луны в первой и третьей четвертях; полная фаза приходится на верхнее соединение, когда находится за Солнцем почти на одной прямой с ним. После захода Солнца перед его восходом Меркурий на небе всегда находится очень близко к Солнцу, что ограничивает ночные наблюдения планеты коротким интервалом. Кроме того, турбулентность нашей атмосферы на низких высотах обуславливает плохое изображение. Поэтому Меркурий наблюдают большей частью при полном дневном свете, а рассеянный дневной свет исключают в минимально возможной мере применением соответствующих экранов. Вследствие всех этих разного рода трудностей только самым упорным наблюдателям удавалось обнаружить детали на поверхности Меркурия. Склапарелли (Италия, 1833-1910) и Барнард (США, 1857-1923) - два великих наблюдателя - сделали зарисовки инертных деталей поверхности, причем эти зарисовки не слишком хорошо согласуются между собой. Поскольку фотографии Луны показали, что некоторые детали, в особенности лучи, а до некоторой степени и моря, становятся особенно заметными в полнолуния, весьма интересно отметить, что Барнард охарактеризовал пятна на Меркурии в основном как похожие на лунные “моря”, а Склапарели получил свои наилучшие результаты, когда планета была близка к полной фазе, т.е. находилась по соседству с Солнцем.

На протяжении длительного времени Меркурий наблюдался во Франции - сначала Антониади в Медоне, а позднее Дольфюсом на Пик де Мидея. Все наблюдатели согласны, что Меркурий медленно вращается вокруг своей оси, будучи всегда обрашенным к Солнцу одной стороной, если не считать не больших либраций. Таким образом, период вращения Меркурия, составляющий 88 суток, согласно Дольфюсу, равен с точностью до 1/10000 сидерическому периоду обращения планеты вокруг Солнца. Так как Солнце освещает только одну сторону планеты, Склапарелли и Антониаде наблюдали Меркурий вечером, а Дольфюс утром. Чтобы сравнить карты Склапарелли и Антониаде с картой Дельфюса, их следует повернуть примерно на 15 О. Дельфюс полагает, что наблюдаемые детали можно привести к совпадению, считая, что угол наклона экватора Меркурия к эклиптике равен 7 О.

Поскольку оптическая разрешающая способность составляет приблизительно О”,3, т.е.1/13-1/20 видимого диаметра Меркурия, на рисунках, очевидно, представлены почти все детали, которые когда либо наблюдались с поверхности Земли.

Сравнение всех трех карт Меркурия на первый взгляд наводит на мысль, что наблюдатели расходятся в своих наблюдениях, но более тщательная проверка выявляет согласие в наиболее существенных чертах. Два человека никогда не нарисуют плохо видимый объект одинаково. Чтобы убедиться в этом важном для наблюдательной астрономии факте, поместите одну из этих карт на таком расстоянии, чтобы детали были едва различны, и зарисуйте, что вы видите. Сравнение рисунка с оригиналом может дать удивительные результаты. Несомненно, поверхность Меркурия во многом сходна с поверхностью Луны, хотя мы и не знаем, действительно ли на поверхности Меркурия имеются моря и кратеры. Однако среднее визуальное альбедо Меркурия (0,14) вдвое больше, чем альбедо Луны.

Попытки доказать существование у Меркурия атмосферы в основном давали отрицательные результаты, хотя иногда наблюдатели высказывали подозрение, что легкие беловатые облачка затуманивали более темные пятна. Скорость убегания для Меркурия составляет всего 3,7 км/сек, а температура на его поверхности может быть гораздо более высокой - выше, чем для Луны. Следовательно, лишь самые теплые газы могли бы остаться на поверхности планеты. Точно также, выбрасываемые во время солнечных бурь частицы, должны, даже в большей степени, чем в случае Луны, вышибать атомы остаточной атмосферы Меркурия. Когда Меркурий наблюдается в виде серпа, то его рога не выходят за пределы их геометрических граней, что указывает на отсутствие сколько-нибудь значительных сумеречных эффектов - рассеяния или рефракции в атмосфере. Однако Дельфюс считает, что свет рогов характеризуется небольшой избыточной поляризацией. Если этот эффект обусловлен наличием атмосферы, то последняя в целом составляет не более 1/300 атмосферы Земли. Петтит (обсерватории Маунт Вилеон и Маунт Баломар) из инфракрасных измерений Меркурия нашел, что температура в подсолнечной точке в перигелии сильно возрастает, достигая 415 О С; в афелии она составляет около 285 О С. При 415 О С плавится олово и свинец; даже цинк находится близ своей точки плавления (419 О С). Поэтому Меркурий даже с большим основанием, чем Плутон, мог быть назван в честь бога преисподней.

В противоположность очень высоким значениям температуры, на стороне Меркурия, обращенной к Солнцу, на вечно темной ее стороне температура очень низкая. Тепло может проникать туда только через твердое тело планеты, посредством теплопроводности, а это процесс крайне медленный, или же посредством конвенции в остатках атмосферы, но последнее можно лишь предполагать. Температура не освещенного полушария, вероятно не превышает 10 О, считая от абсолютного нуля, т.е. там даже холоднее, чем на Плутоне. Таким образом, Меркурий проявляет своего рода “раздвоение личности”, совмещая в себе обе крайности значений температуры планет. Интересно знать, не могут ли оказаться захваченными и замороженными на темной стороне такие газы, как азот, углерод, углекислый газ, кислород и другое. Для ответа на этот вопрос требуется более строгая проверка при помощи космических зондов и радиолокационных наблюдений.

На очень большое сходство между Меркурием и Луной указывают их размеры, характер вращения, разряженность атмосферы и внешний вид. Оба этих тела практически одинаково отражают свет, как в отношении цвета, так и в отношении интенсивности при различных углах отражения. Лучи света, падающие перпендикулярно к поверхности, отражаются в направлении падения достаточно эффективно, но при падении света под большими углами отражение бывает очень слабым. Даже поляризация или плоскость колебаний отраженного света для Меркурия и Луны одинакова. Все это дает нам право сделать вывод, что поверхность Меркурия сходна с поверхностью Луны, как в отношении отдельных деталей, так и в целом. Несомненно, поверхность Меркурия неправильной формы и неровная.

Средняя плотность Меркурия, хотя она определена не слишком точно, по-видимому, почти в 5,5 раза выше плотности воды, т.е. примерно равна плотности Земли. Так как масса Меркурия мала, то увеличение его плотности, вследствие сжатия, ограничено величиной 1-2%, а средняя плотность основных составляющих его материалов, если извлечь их из планеты, согласно подсчетам Юри составит 5,4 вместо 4,4 для Земли. Следовательно, доля более тяжелых элементов для Меркурия должна быть вполне измеримое железное ядро. В этом отношении Меркурий сильно отличается от Луны и, по существу, является самым плотным телом значительных размеров в солнечной системе. Эволюционный процесс, в результате которого возникла высокая плотность, пока еще не вполне понятен, но, несомненно, он связан с близостью Меркурия к Солнцу.

4. Рельеф поверхности Меркурия

С пролетной траектории космического аппарата “Маинер-10” в 1974 г. было сфотографировано свыше 40% поверхности Меркурия с рзрешением от 4 мм до 100 м, что позволило увидеть Меркурий примерно так же, как Луну в темноте с Земли. Обилие кратеров - наиболее очевидная черта его поверхности, которую по-первому впечатлению можно уподобить Луне. И не случайно даже специалисты - селенологи, которым показали эти снимки вскоре после их получения приняли их за фотографии с Луны.

Действительно, морфология кратеров близка к лунной, их ударное происхождение не вызывает сомнений: у большинства виден очерченный вал следы выбросов раздробленного при ударе материала с образованием в ряде случаев характерных ярких лучей и поле вторичных кратеров. У многих кратеров различима центральная горка и террасная структура внутреннего склона. Интересно, что такими особенностями обладают не только практически все крупные кратеры диаметром свыше 40-70 км, но и значительно большее число кратеров меньших размеров, в пределах 5-70 км (конечно, речь здесь идет о хорошо сохранившихся кратерах). Эти особенности можно отвести как на счет большей кинетической энергии тел, выпадавших на поверхность, так и на счет самого материала поверхности.

Степень эрозии и сглаживание кратеров различна. Например, хорошо заметные лучевые структуры говорят о том, что она невелика, в то же время у ряда кратеров сохранились едва заметные кромки. В целом меркурианские кратеры по сравнению с лунными менее глубокие, что также можно объяснить большей кинетической энергией метеоритов из-за большего, чем на Луне ускорения силы тяжести на Меркурии. Поэтому образующий при ударе кратер эффективнее заполняется выбрасываемым материалом. По этой же причине вторичные кратеры расположены ближе к центральному, чем на Луне, и отложения раздробленного материала в меньшей степени маскируют первичные формы рельефа. Сами вторичные кратеры глубже лунных, что опять же объясняется тем, что выпадающие на поверхность осколки испытывают большее ускорение силы тяжести.

Так же, как и на Луне, можно в зависимости от рельефа выделить преобладающие неровные “материковые” и значительно более гладкие “морские” районы. Последние преимущественно представляют собой котловины, которых, однако, существенно меньше, чем на Луне, их размеры обычно не превышают 400-600 км. К тому же, некоторые котловины слабо различимы на фоне окружающего рельефа. Исключение составляет упоминавшаяся обширная котловина Канорис (Море Жары) протяженностью около 1300 км, напоминающая известное Море Дождей на Луне. Возможно, что имеются и другие подобные котловины на оставшейся пока не отснятой большей части поверхности планеты. Морфология обрамляющих валов, поля вторичных кратеров, структура поверхности внутри котловины Канорис дают основания предполагать, что при ее формировании было выброшено больше материала, чем при образовании Моря Дождей, и что в дальнейшем могли последовательно происходить процессы дополнительного проседания и поднятия дна, связанные с возможным оттоком магмы и изостатическим выравниванием.

В преобладающей материковой части поверхности Меркурия можно выделить как сильно кратеризированные районы, с наибольшей степенью деградации кратеров, так и занимающие обширные территории старые межкратерные плоскогорья, свидетельствующие о широко развитом древнем вулканизме. Это наиболее древние сохранившиеся формы рельефа планеты. Равнинные районы морей и примыкающих к ним участков сформировались в более позднюю эпоху. Об этом можно судить по слабой насыщенности равнин относительно небольших размеров. Выровненные поверхности котловин, очевидно, покрыты наиболее толстым слоем раздробленных пород - реголита. Наряду с небольшим числом кратеров здесь встречаются складчатые гребки, напоминающие лунные. Некоторые из примыкающих к котловинам равнинных участков, вероятно образовались при отложений выброшенного из них материала. Вместе с тем для большинства равнин найдены вполне определенные свидетельства их вулканического происхождения, однако это вулканизм более позднего времени, чем на межкратерных плоскогорьях. Создается впечатление, что по своей морфологии и возрасту эти райны Меркурия примерно аналогичны районам лунных морей и равнинных поверхностей Марса, образование которых обычно датируется периодом на рубеже около 3-4 млрд. лет назад. К этому периоду относят завершение этапа наилее интенсивной бомбардировки планет крупными телами, в результате чего и образовались “моря” и другие крупные, иногда менее четко проявляющиеся кратеры.

Если теперь сопоставить количество больших котловин и кратеров диаметром более 200 км на Меркурии, Луне и Марсе, то оказывается, что их плотность приблизительно обратно пропорционально площади поверхностей этих небесных тел, в то время как их поперечники отличаются всего вдвое. Отсюда следует, что число метеоритов в областях пространства, занимаемого этими планетами, могло быть примерно одинаковым. Понять это не так просто, как может показаться на первый взгляд. Ведь обычно исходят из представлений о том, что основным регуляторным источником метеоритов, “поставляемых” во внутренние области солнечной системы, служит астероидный пояс, а планеты находятся от него на разных расстояниях. Однако если принять во внимание, что помимо этого основного источника могут быть и другие подобные скопления астероидных тел за орбитой Плутона, также выполняющие функции “поставщиков” метеоритов, различие в расположении ближайших к Солнцу планет становится несущественным. Такое предположение кажется более вероятным, нежили приходящие на помощь в подобных случаях разнообразные “катастрофические” гипотезы. Известным американским ученым Г.Везеримом для объяснения наблюдаемых закономерностей была предложена гипотеза о катастрофическом разрушении астероида под действием приливных сил при его прохождении вблизи Земли и Венеры и последующего выпадания осколков. Осколки могли бы тогда распределиться в пределах области расположения планет земной группы приблизительно равномерно. При всей внешней привлекательности такого сценария нелишне, по-видимому, вспомнить философско-методологический принцип, согласно которому не надо изобретать сущности сверх необходимых. Другими словами, не надо привлекать экзотических объяснений, если можно ограничиться более простыми. Анализируя основные черты поверхности Меркурия мы обращали внимание как на многие сходства, так и на существенные различия с Луной. Внимательное изучение обнаруживает еще одну интереснейшую особенность, проливающую свет на историю формирования планеты. Речь идет о характерных следах тектонической активности в глобальном масштабе в виде специфических крутых уступов, или откосов-эскарпов. Эскарпы имеют протяженность от 20-500 км и высоту склонов от нескольких сотен метров до 1-2 км. По своей морфологии и геометрии расположения на поверхности они отличаются от обычны тектонических разрывов и сбросов, наблюдаемых на Луне и Марсе, и скорее образовались за счет надвигов, наслоений вследствие напряжения в поверхностном слое, возникших при сжатии Меркурия. Об этом свидетельствует горизонтальное смещение валов некоторых кратеров.

Некоторые из эскарпов подверглись ударной бомбардировке и частично разрушены. Это означает, что они образовались раньше, чем кратеры на их поверхности. По сжении эрозии этих кратеров можно прийти к заключению, что сжатие коры происходило в период образования “морей” около 4 млрд. лет назад. Наиболее вероятной причиной сжатия нужно, видимо, считать начало остывания Меркурия. Согласно другому интересному предположению, выдвинутому рядом специалистов, альтернативным механизмом мощной тектонической активности планеты в этот период могло быть приливное замедление вращения планеты примерно в 175 раз: от первоначально предполагаемого значения около 8 часов до 58,6 суток! Действительно, ряд хребтов, гилобов, линейчатых сегментов валов и эскарпов обладает преимущественной ориентацией в меридиональном направлении, с небольшим отклонением к западу и востоку, что как будто благоприятствует гипотезе. Вместе с тем нельзя исключить и того, что эти черты поверхности запечатлели внутренне напряжение в коре планеты под воздействием приливных возмущений от Солнца, игравших особенно важную роль при образовании таких структур в процессе сжатия Меркурия.

5. Меркурий - мир жара и холода

Меркурий- яркое светило, но увидеть его на небе не так просто. Дело, в том, что, находясь вблизи Солнца, Меркурий всегда виден для нас недалеко от солнечного диска, отход от него то влево (к востоку), то вправо (к западу) только на небольшое расстояние, которое не превосходит 28 О. Поэтму его можно увидеть только в те дни года, когда он отходит от Солнца на самое большое расстояние. Пусть, например, Меркурий отодвинулся от Солнца влево. Солнц и все светила в своем суточном движении плывут по небу слева направо. Поэтому сначала заходит Солнце, а через час с небольшим заходит Меркурий, и надо искать эту планету низко над Западным горизонтом.

Если рассматривать Меркурий в сильный телескоп, то вместо звездочки он будет выглядеть, как маленькая Луна, имея очертания либо узкого серпика, либо полукруга. Это происходит по той же причине, что и смена фаз Луны. Меркурий - это темный шар, собственного света он не дает и сияет на небе за счет отражения солнечных лучей. На той половине Меркурия, которая повернута к Солнцу, - день, а на другой - ночь. Мы видим только освещенную часть планеты. Диаметр Меркурия в 2 Ѕ раза меньше диаметра Земли и в Ѕ раза больше диаметра Луны.

В сильный телескоп на Меркурии можно заметить темные пятна, имеющие примерно такой же вид, как “моря” Луны для невооруженного глаза. Наблюдая за этими пятнами, ученые установили одну важную особенность. Двигаясь по своему пути вокруг Солнца, Меркурий вместе с тем поворачивается вокруг своей оси так, что к Солнцу обращена всегда одна и таже его половина. Это значит, что на одной стороне Меркурия всегда день, а на другой - ночь.

Меркурий гораздо ближе к Солнцу, чем Земля. Поэтому Солнце на нем светит и греет в 7 раз сильнее, чем у нас. На дневной стороне Меркурия страшно жарко, тем вечное пекло. Измерения показывают, что температура там поднимается до 400 О выше нуля. Зато на ночной стороне должен быть всегда сильный мороз, который, вероятно, доходит до 200 О и даже 250 О ниже нуля.

На такой планете не может быть ни океанов, ни атмосферы. Действительно, самые тщательные наблюдения не обнаружили на Меркурии никаких признаков воздушной оболочки.

Итак, Меркурий - это царство пустынь. Одна его половина - горячая каменная пустыня, другая половина - ледяная пустыня, быть может покрытая замерзшими газами.

Использованная литература

И.А. Климишин “астрономия наших дней”, Москва “Наука”, 1980 г.

Ф.У.И.П.П.Л. “Земля, Луна и планеты”, Издательство “Наука”, 1967

Большая советская энциклопедия. Издание второе. Москва 1978 г.

М.Я. Маров “Планеты Солнечной системы”

В.И.Морозов “Физика планет”.

Подобные документы

    Изучение и анализ Меркурия как первой планеты в солнечной системе. Движение планеты и описание ее сущности и физических характеристик. Поверхность. Специфика атмосфера и физического поля планеты и их исследование. Колонизация Меркурия. Планета в цифрах

    реферат , добавлен 28.11.2008

    Наблюдение за планетой Меркурий невооруженным глазом и в телескоп. Влияние близости Меркурия к Солнцу на температуру его поверхности. Внутреннее устройство планеты, наличие атмосферы, магнитного поля, кратеров и "морей". Гипотеза о появлении Меркурия.

    реферат , добавлен 29.04.2013

    Ознакомление с строением Солнечной системы. Анализ научных данных и сведений по планетам земной группы. Рассмотрение особенностей Меркурия, Венеры, Земли и Марса. Изучение размеров, массы, температуры, периодов обращения вокруг оси и вокруг Солнца.

    реферат , добавлен 28.01.2015

    Исследование истории названия и общая характеристика Меркурия как самой близкой к Солнцу планеты Солнечной системы. Внутренний характер орбиты планеты Меркурий. История исследования, фотоснимки поверхности и основные физические характеристики планеты.

    презентация , добавлен 17.01.2012

    Физические и орбитальные характеристики, атмосфера, физические поля и история открытия Меркурия, особенности движения вокруг Солнца, сравнение с другими планетами системы. Исследования, посвященные наблюдениям за поверхностью планеты. Интересные факты.

    реферат , добавлен 29.04.2009

    Сущность понятия "космос". Направления использования космоса для потребностей человека: космическое производство и землеведение. Планеты солнечной системы. Меркурий как самая близкая к Солнцу планета. Венера как небесный близнец Земли. Атмосфера на Марсе.

    презентация , добавлен 05.10.2011

    Построение графика распределения официально известных планет. Определение точных расстояний до Плутона и заплутоновых планет. Формула вычисления скорости усадки Солнца. Зарождение планет Солнечной системы: Земли, Марса, Венеры, Меркурия и Вулкана.

    статья , добавлен 23.03.2014

    Общая характеристика планет Солнечной системы как наиболее массивных тел, движущихся по эллиптическим орбитам вокруг Солнца. Расположение планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Размеры и химический состав планет.

    презентация , добавлен 04.02.2011

    Строение Солнечной системы, внешние области. Происхождение естественных спутников планет. Общность газовых планет-гигантов. Характеристика поверхности, атмосферы, состава Меркурия, Сатурна, Венеры, Земли, Луна, Марса, Урана, Плутона. Пояса астероидов.

    реферат , добавлен 07.05.2012

    Планеты Солнечной системы, известные с древних времен и открытые недавно: Меркурий, Венера, Земля, Марс, планеты-гиганты Юпитер, Сатурн, Уран и Нептун. Происхождение их названий, расстояния от Солнца, размеры и массы, периоды обращения вокруг Солнца.

Последние исследования российских ученых позволяют расширить наши представления о ближайшей к Солнцу планете без помощи космических аппаратов.

14 января 2008 г. космический аппарат США Messenger прошел на небольшом расстоянии от планеты Меркурий. Ученые долго ждали этого события; по существу, с 1975 г., когда у планеты побывал другой аппарат, Mariner-10 .

Меркурий принадлежит к группе из четырех планет земного типа, расположенных близко к Солнцу. Он находится на самом коротком расстоянии от светила и недалеко от Земли. Увидеть планету непросто: она никогда не уходит от Солнца на угол больше чем 28°, а обычно меньше. Это удаление называется элонгацией. Но и в наибольшей элонгации (18-28°) Меркурий можно наблюдать только на фоне светлого сумеречного неба в течение короткого времени на восходе (рис. 1 ) или после захода Солнца.

Минимальное расстояние до Меркурия всего 80 млн км, но наблюдать его в это время не удается не только из-за яркого света Солнца, но и потому, что к Земле в этот период обращена его ночная сторона. «Счастлив астроном, Меркурий увидевший», — значится в средневековых астрономических наставлениях. Тем не менее заметить планету нетрудно, если только помнить короткие календарные периоды ее видимости, знать, где ее искать, и учитывать, что видна она очень недолго, теоретически не более 1,5 ч, а практически намного меньше. Условия видимости повторяются несколько раз в год. С помощью телескопа Меркурий можно увидеть только в дневное время, причем распознать какие-либо детали на нем практически не удается. Угол, под которым планета видна в квадратуре (половина диска), составляет в среднем 7,3 угл. с. «Хорошим» в наземных обсерваториях считается телескоп с разрешением около одной угловой секунды (т. е. его способность разделить точки изображения, разделенные углом в 1 с). Поэтому на фотографических изображениях Меркурий всегда остается небольшим мутным пятнышком. Делу могли бы помочь автоматические орбитальные телескопы, например «Хаббл» (HST), но, по мнению администрации телескопа, если возникнет ошибка в движении инструмента, мощное излучение Солнца может попасть на уникальные приборы и их испортить. Кстати, то же касается наземных астрономических инструментов для работы с Меркурием.

Некоторые наиболее искусные астрономы прошлого пытались использовать удивительные свойства человеческого зрения для составления карт этой планеты. В первой половине прошлого века их рисовали французские астрономы Б. Лио (1897-1952) и А. Дольфюс (рис. 2 ). По их наблюдениям, каждые 116 суток, когда Меркурий сближался с Землей, он был обращен к ней одной и той же стороной. Впервые с таким утверждением выступил итальянский астроном Д. Скиапарелли (1835-1910), больше известный в связи с марсианскими «каналами». Он провел первые наблюдения Меркурия в 1881 г. и повторил их через год. Никаких изменений во внешнем виде планеты ученый не заметил. Скиапарелли продолжал наблюдения, и в 1889 г. окончательно решил, что планета всегда ориентирована одной стороной к Солнцу. (В 1890 г. исследователь пришел к аналогичному выводу и в отношении Венеры, что тоже неверно.) Был сделан вывод, что Меркурий вращается синхронно, т. е. что противоположной стороной планета всегда обращена к Солнцу. Иными словами, считалось, что период вращения планеты совпадает с периодом ее обращения вокруг Солнца, в результате чего на одном полушарии Меркурия вечный зной, а на другом — постоянный космический холод. Это было ошибкой, но обнаружилась она только с появлением межпланетной радиолокации. Вращение планеты оказалось необычным: благодаря резонансу вращения и обращения 3 оборота вокруг оси Меркурий завершает точно за 2 своих «года», т. е. за 176 земных суток (период обращения планеты вокруг Солнца, ее «год», составляет 88 суток). Солнце поочередно освещает оба полушария планеты, а из-за того, что полярная ось планеты практически нормальна к плоскости ее орбиты, над глубокими долинами вблизи полюсов Солнце не восходит никогда.

С началом космических исследований надежды на значительный прогресс в изучении Меркурия стали возлагать на посылку к нему космического аппарата. Из астрономических наблюдений давно были найдены основные характеристики орбиты Меркурия: она наклонена к плоскости эклиптики (орбите Земли) на 7° и сильно вытянута: при среднем расстоянии от Солнца в 0,39 а.е. в перигелии Меркурий приближается к нему до 0,31 а.е. и удаляется в афелии до 0,47 а.е. Орбитальная скорость планеты в среднем составляет 48 км/с, а максимально (в перигелии) достигает 54 км/с, что почти вдвое превышает орбитальную скорость Земли. Поэтому прямой перелет космического аппарата к Меркурию с выходом на орбиту его спутника невозможен. Приходится использовать мощное средство небесной механики, так называемые «гравитационные маневры», — многократное последовательное сближение аппарата с планетами. Такой аппарат, Mariner-10 (США), был запущен в 1973 г. и в 1974-1975 гг. несколько раз кратковременно сближался с Меркурием в пролетном режиме.

Наземные спектрофотометрические измерения показывают, что по своим свойствам поверхностные породы многих областей Меркурия напоминают материковые (горные) породы Луны, хотя и несколько светлее их. Свойства Меркурия «по умолчанию» относили к свойствам Луны. До начала космических исследований даже диаметр планеты был известен неточно, а оценка его массы и средней плотности была затруднена из-за отсутствия спутников. Атмосферы у Меркурия практически нет; она крайне разрежена, в миллиарды раз менее плотная, чем у Земли, причем с необычным газовым составом.

В отличие от Марса и Венеры, к которым было направлено много исследовательских миссий, Mariner-10 до 2008 г. оставался единственным космическим аппаратом, который побывал у Меркурия. Значительная часть основных данных о физике планеты, как и ее изображения, были получены при сближениях Mariner-10 с Меркурием. В отличие от других планет земной группы, последний обладает гигантским железо-никелевым ядром. Скрывающая его внешняя силикатная сферическая оболочка по составу действительно похожа на породы поверхности Луны, причем имеет толщину всего 700-800 км. Одним из главных результатов Mariner-10 , наряду с получением снимков почти половины планеты, было открытие значительного магнитного поля у Меркурия, возможно дипольного, что стало научной сенсацией. Парадокс этого открытия заключается в том, что для возбуждения поля нужно, чтобы у планеты было жидкое ядро, а возможность его существования как раз оспаривается теорией: запасы тепла у столь маленькой планеты (с диаметром 4880 км и массой 5,5% земной) не могли сохраниться дольше четверти ее возраста, 1-1,5 млрд лет. Кроме того, медленное вращение планеты и наблюдаемое положение полярной оси плохо согласуются с теоретическими представлениями о необходимых для возбуждения поля условиях. Происхождение магнитного поля Меркурия пока не находит однозначного объяснения.

Орбитальные особенности миссии Mariner-10 оказались неожиданностью для Джузеппе Коломбо, автора проекта полета Mariner-10 . (Ныне имя Джузеппе Коломбо носит проект Европейского космического агентства «БепиКоломбо», предназначенный для вывода одноименного аппарата на орбиту спутника Меркурия с запуском в 2011-2012 гг.) После первого сближения Mariner-10 с планетой (24 марта 1974 г.) и сообщения в прессе об успехе Д. Коломбо спросили, что произойдет с аппаратом дальше. Чтобы рассчитать дальнейшие события, была запущена программа расчета движения аппарата. Однако результаты расчета сначала были восприняты как ошибочные. Они показали, что аппарат будет возвращаться к планете с периодом в два меркурианских года и находить ее в абсолютно той же позиции относительно Солнца и аппарата, с теми же тенями от тех же самых гор. Авторы не сразу поняли, что всё происходящее стало проявлением резонансов, которыми пронизана вся Солнечная система. А в движении аппарата это привело к тому, что другую сторону планеты сфотографировать так и не удалось. На рис. 4 показано положение исследованных и отснятых аппаратом Mariner-10 участков поверхности планеты, почти 60% которой в 1974-1975 гг. остались неизвестными.

В начале XXI в. исследования Меркурия активизировались. Запущенный в 2004 г. новый аппарат США Messenger после нескольких гравитационных маневров, включая первое сближение с ним в январе 2008 г., должен в марте 2011 г. выйти на орбиту первого спутника Меркурия. Среди главных научных задач — исследование неизвестной стороны планеты. Необходимость в новых данных для обеспечения обеих миссий, как Messenger , так и «БепиКоломбо», очевидна, но дело не только в этом. К началу XXI в. Меркурий остается одной из наименее исследованных планет. Актуальность ее изучения определяется несколькими причинами. Существует, например, космогонический парадокс расположения орбиты Меркурия в зоне, где известные модели аккреции (образование планет путем накопления и слипания частиц и глыб протопланетного материала, называемых планетезималями) не могут объяснить возникновение планетного тела из-за слишком высоких орбитальных скоростей исходного материала. Если относительные скорости частиц слишком велики, то при столкновении в космос разбрасывается больше материала, чем накапливается у формирующейся планеты. Именно такова орбита Меркурия.

Тем не менее модели планеты, основанные на наблюдаемом составе ее поверхности, прежде всего на содержании FeO, всё же утверждают, что Меркурий образовался из планетезималей, возникших именно в районе современной орбиты планеты. Это необычная «железная» планета, с отношением содержания железа к кремнию в 5 раз больше земного. Она имеет наиболее высокую в Солнечной системе среднюю плотность (5,43 г/см 3), практически равную средней земной (5,52 г/см 3), а так называемая «освобожденная» (разгруженная от давления) плотность Меркурия (5,30 г/см 3) намного превосходит «освобожденную» земную (4,10 г/см 3). Отношение радиусов ядра и поверхности (около 0,8) наибольшее среди планет группы Земли. Так называемый безразмерный момент инерции, низкая величина которого характеризует отличие внутреннего строения от однородного шара, среди них наименьший — 0,324.

Реголит (грунт) Меркурия, лишенного атмосферы, подвергается постоянному воздействию космических факторов и значительному термическому циклированию. Солнечная радиация на Меркурии в среднем в 6,7 раз выше, чем на Земле. Только там действует уникальный механизм прямого взаимодействия солнечного ветра с поверхностью безатмосферной планеты, расположенной так близко к Солнцу. При различии в размерах Земли и Меркурия в три раза, магнитосфера последнего меньше земной примерно в 18 раз. Ионосфера фактически отсутствует, что приводит к необычному взаимодействию магнитосферы с потоками фотоэлектронов, эмиттируемых дневной стороной планеты, и с исходящими от поверхности потоками атомов Na, K и даже Ca.

Рельеф Меркурия

Несмотря на то что снимки поверхности Меркурия напоминают «материковые» области Луны, «морей» лунного типа (лавовых), которые так привычны на диске нашего спутника, на данной стороне планеты не оказалось. Луна и Меркурий показаны в одинаковом масштабе на рис. 5 , где малоконтрастные детали последнего контрастируют с пятнистой поверхностью Луны.

Поверхность рассматриваемой планеты имеет особенности, присущие только Меркурию. Выделяются несколько характерных типов рельефа. Наиболее древний, насыщенный, — равнина, покрытая бесчисленным количеством перекрывающихся метеоритных кратеров, где удар каждого следующего метеоритного тела приходился на участок, уже многократно изрытый кратерами. Такая поверхность показана на рис. 6 , где размер еще различимых деталей составляет 300 м. Солнце светит слева и находится довольно низко над горизонтом. Вся поверхность покрыта сплошной сетью кратеров и кажется не отличимой от материковых районов Луны. Почти все они образовались от падения крупных метеоритных тел в период формирования планеты, около 4 млрд лет назад. Сначала выпадали протопланетные тела (планетезимали) и метеориты самых различных размеров, а потом всё более мелкие фрагменты, следами которых покрыто всё дно кратера справа. Вместе с тем крупные метеоритные тела порой врезались в поверхность даже на поздней стадии. Так образовался хорошо сохранившийся кратер диаметром 25 км правее и ниже центра снимка. Следов более поздних мелких кратеров его вал не имеет.

Другая отметка последовательности событий видна в левом нижнем углу снимка, где расположен большой шестидесятикилометровый кратер с сильно разрушенным валом. На его дне заметны следы излияния лавы, образовавшей огромный поток, который двигался слева и затвердел, пройдя больше половины диаметра кратера. Извержение происходило уже после выпадения основного объема метеоритного вещества. Вместе с тем редкие и сравнительно мелкие тела выпадали на поверхность лавового натёка и после его образования. С большей или меньшей плотностью ударные образования покрывают значительную часть известной ныне поверхности Меркурия. События, оставившие на ней след, в основном происходили 3,9 × 10 9 лет назад. Точно так же выглядит поверхность Луны, возраст образцов которой установлен непосредственно.

Кинетическая энергия сталкивавшихся с поверхностью Меркурия протопланетных тел была очень велика. Каждый их удар сопровождался мощным взрывом, энергия которого была заметно выше, чем у обычной взрывчатки с той же массой, что и у метеорита. Интересно, что у лунных кратеров значительно большие диаметры, чем у подобных на Меркурии, образованные такими же по массе метеороидами. Поскольку ускорение свободного падения на Меркурии (3,72 м/c 2) выше, чем на Луне (1,62 м/c 2), выброшенный при ударах метеоритов материал выпадал не так далеко от центра, как на Луне: при одинаковой энергии взрыва площадь, которую покрывает выброс на Меркурии, в 5 раз меньше, чем на Луне.

Бескратерные равнины или обширные промежутки между кратерами характерны только для Меркурия. Тем не менее, сходство внешнего вида и реголита Луны и Меркурия поразительно. Некоторые меркурианские кратеры имеют систему «лучей», простирающихся на большое расстояние. На Луне, где много таких кратеров, их протяженность гораздо больше из-за меньшего ускорения свободного падения. Например, лучи кратера Тихо уходят за край видимого диска Луны. Известно, что яркость лучей заметно усиливается к полнолунию, а затем ослабевает, что объясняется высокой пористостью материала: Солнце освещает внутренность мелких пор материала лучей, только когда поднимается высоко над горизонтом. Высота гор на Меркурии, вычисленная по длине теней, оказалась меньше, чем на Луне, что вероятно, тоже связано с различием в ускорениях свободного падения. Горы Меркурия достигают 2-4 км, а наибольшая высота лунных Скалистых гор составляет 5,8 км.

Необычная деталь рельефа на Меркурии — эскарп (уступ высотой 2-3 км, разделяющий два, в общем, ничем не отличающихся района). Протяженность таких обрывов — от сотен до полутысячи километров. Таков эскарп Дискавери. Эскарпы образовались, когда происходило сжатие Меркурия, повлекшее за собой сдвиги и наползание отдельных участков его коры. Подобного явления на Луне не наблюдалось.

Поверхность Меркурия, как и лунная поверхность, лишена ярких цветовых оттенков. Несмотря на сходство рельефа и реголита Луны и Меркурия, поверхность последнего отличается большим своеобразием. Вся видимая сторона Луны покрыта огромными низинами — «морями» (рис. 5 ). А на исследованной Mariner-10 стороне Меркурия морей (то есть равнин или «бассейнов») нет совсем. В этом смысле он скорей напоминает обратную сторону Луны. Здесь единственное образование, которое отдаленно напоминает большое лунное кратерное море, — бассейн Caloris Planitia («Море Зноя», или «Море Жары»), часть которого находилась во время миссии Mariner-10 на самом терминаторе (на границе день—ночь). Мозаика из снимков Caloris Planitia показана на рис. 7 .

Наземными средствами

Выяснилось, что Caloris Planitia — не самый большой бассейн на Меркурии. Гигантское образование такого рода находится на «неизвестной» стороне планеты. За 30 лет, прошедшие после посещения Mariner-10 , астрономия продвинулась настолько, что поверхность Меркурия удается исследовать в наземных астрономических наблюдениях. Важнейшую роль в этом сыграли два новшества: приемники излучения ПЗС (приборы с зарядовой связью) и компьютерные средства обработки информации. К тому же ученые теперь смело берутся за проблемы, которые совсем недавно казались такими же безнадежными, как картирование Меркурия наземными средствами.

Отложим немного описание неизвестной стороны планеты, чтобы рассказать, как всё это удалось сделать. Наземные наблюдения Меркурия «классическими» методами, по сравнению с изучением других тел Солнечной системы, подвержены многим другим ограничениям. Поскольку наблюдения выполняются в астрономические сумерки или даже на фоне дневного неба, для улучшения отношения сигнал-шум часто используется ближний инфракрасный диапазон, т. к. яркость чистого неба падает с увеличением длины волны λ как λ -4 . Время наблюдений в сумерки редко превышает 20-30 мин, причем планета находится невысоко над горизонтом, когда значительная воздушная масса на луче зрения еще больше осложняет задачу. Более или менее продуктивное изучение Меркурия возможно только в горных обсерваториях низких широт. Но на пределе технических возможностей получить изображения планеты с достаточным разрешением наземными техническими и аналитическими средствами всё же возможно. Что же касается улучшения качества изображений, ключевой идеей стало использование очень коротких, миллисекундных экспозиций. Одним из первых обширные серии наблюдений Меркурия с ПЗС-приемниками в 1995-2002 гг. выполнил Й. Варелл (J. Warell ) в обсерватории на о. Ла Пальма (Канарские острова) на полуметровом солнечном телескопе. Экспозиции были от 25 до 300 мс. Варелл использовал единичные наиболее удачные электронные снимки без их дальнейшего совмещения. Естественно, они уступают изображениям, полученным при совместной обработке больших массивов электронных фотографий.

Уже упоминавшееся разрешение телескопа определяется отношением длины волны к его диаметру — теоретический дифракционный предел, который на длине волны зеленого, например, света, 550 нм, для полутораметрового телескопа должен составлять около 0,1 угловой секунды. Но типичное реальное разрешение оказывается в 9-15 раз хуже дифракционного предела. Оно определяется, главным образом, неспокойствием земной атмосферы и зависит от места наблюдения, времени суток, плотности аэрозольной составляющей (тумана, облаков) и, конечно, зенитного расстояния объекта. Идея метода коротких экспозиций заключается в том, что прибор использует мгновенные прояснения атмосферы, когда изображение четкое и не успевает размыться.

Но всё не так просто. Атмосферу можно представить себе как множество случайно образовавшихся слабо преломляющих линз неправильной формы, которые возникают и исчезают, искажая фронт приходящей световой волны. Когда астрономы получали снимки небесных тел на фотопластинках, за время экспозиции этот небесный сценарий изменялся десятки раз, а каждая точка неспокойного изображения успевала засветить тысячи зерен фотоэмульсии, размывая снимок. Характерное время, за которое мгновенные оптические свойства атмосферы изменяются, редко бывает меньше 15-20 мс. Если экспозицию сделать короткой, скажем 3 миллисекунды, среди фотографий попадутся и «хорошие», хотя их будет немного. Уменьшение экспозиции не устраняет искажения, вызываемые нерегулярностями воздушных линз, но существенно уменьшает размытие изображения и позволяет приблизиться к дифракционному пределу. Накопив значительное количество снимков, можно затем выбрать из них изображения с наименьшими искажениями, пригодные для дальнейшей обработки. Это очень трудоемкая операция, особенно если учесть, что сам размер изображения Меркурия обычно составляет всего от 0,2 до 0,5 мм.

Несмотря на всю убедительность основной идеи метода коротких экспозиций, реализовать ее с фотоэмульсиями было невозможно: в реальных условиях наблюдений невысокая фоточувствительность эмульсий требовала минимальных экспозиций в сотни миллисекунд, а то и секунду. Короткие экспозиции стали возможными только с появлением новых детекторов изображений — ПЗС, квантовая эффективность которых достигает 80% и более. Интересно отметить, что сравнительно небольшие телескопы (диаметром 1-2 м) обладают определенными преимуществами при коротких экспозициях, т. к. охватывают меньше атмосферных «линз», но собирают еще достаточно света. Тем не менее, число фотонов, приходящееся на единичный пиксель (элемент изображения) при использовании ПЗС с высоким разрешением, всегда ограничено и подвержено значительным флуктуациям. Поэтому хороший результат можно получить лишь при последующей совместной обработке многих сотен и даже тысяч электронных снимков. А доступное время наблюдений Меркурия настолько ограничено, что экспериментальный материал необходимого объема возможно получить только на достаточно большом инструменте, когда суммарное время экспозиций составляет лишь малую часть всего наблюдательного времени. При очень благоприятных атмосферных условиях до 25% изображений получаются сравнительно четкими.

Результаты наблюдений критично зависят от состояния атмосферы, но характеризовать их можно только после завершения обработки. Начало описываемой работе положила большая удача в наших пробных наблюдениях. 3 ноября 2001 г. в Абастуманской астрофизической обсерватории республики Грузия (41°45" с.ш., 42°50" в.д.) с помощью новой ПЗС-камеры, установленной на телескопе диаметром 1,25 м, проводились наблюдения Меркурия в утренней элонгации планеты. Положение планеты в принципе позволяло наблюдать сектор, сфотографированный Mariner-10 в 1974 г. Всю ночь шел сильный дождь, но на рассвете облака разошлись, и при полном безветрии удалось получить серию изображений в ближнем инфракрасном диапазоне, от 700 до 950 нм. После обработки всего полученного массива снимков методами корреляционного совмещения (stacking ) было создано разрешенное изображение планеты, обладавшее сходством деталей с фотомозаикой Mariner-10 . Более того, очертания небольших образований размерами 150-200 км повторялись на полученном изображении.

После подробного анализа результатов сомнений уже не оставалось: благодаря коротким экспозициям и необычному кратковременному прояснению атмосферы удалось получить комбинированные снимки такой четкости, которая соответствует дифракционному пределу инструмента (рис. 8 ). В дальнейшем такие благоприятные атмосферные условия встречались нечасто; как правило, требовалось собрать 5-10 тыс. удачных изображений для дальнейшего синтеза изображений.

Корреляционное совмещение

Обработка исходных миллисекундных электронных фотографий планеты весьма трудоемка и отнимает много времени. Она выполняется с помощью специальных компьютерных программ методом корреляционного совмещения и, наряду с операциями «нечеткой маски» и некоторыми математическими приемами, требует выбрать так называемый пилот-файл, что обычно приходится делать вручную. Пилот-файл, или образец, — это наиболее удачный, по мнению обработчика, снимок, который в значительной мере определяет результат достигаемого совмещения. Перебор пилот-файлов многократно увеличивает трудоемкость обработки, т. к. результат становится виден только на заключительных шагах обработки. Пилот-файл должен представлять собой наименее искаженное изображение среди исходного наблюдательного материала. Дальше программы обработки анализируют содержание образца, находят в нем какие-то детали и ищут повторение этих почти незаметных подробностей в тысячах других электронных снимков. Если, исходя из опыта, форму и положение пилот-файла еще можно оценить, то оценка реальности едва различимых деталей находится где-то между изображением и воображением. В ходе настоящей работы было создано несколько программ автоматической обработки. К сожалению, эффективность автоматической программы значительно уступает корреляционному совмещению с ручным отбором.

Каждая точка изображения описывается известной математической функцией распределения интенсивности, которая в центральной части плавно убывает от центра. Обычно «точка» представляется шириной этой функции на уровне 0,7 или 0,5 максимума. Если удалось получить много тысяч исходных электронных снимков, при их обработке можно воспользоваться известными свойствами статистики случайных величин и выбирать «точку» на уровне, например, 0,9 максимума. Тогда разрешение значительно улучшится. Есть и другие приемы, но самым надежным всё же остается ручной отбор.

После первой части обработки, несмотря на все приемы, изображение остается как бы размытым. Астрономы давно нашли способ улучшения изображений методом «нечеткой маски». Для этого во времена фотоэмульсий с полученного изображения делали слегка расфокусированный негатив. Затем сквозь него переснимали исходный снимок. Крупные, размытые детали таким образом уходили, а тонкую структуру мелких деталей можно было выделять вплоть до уровня шума. Сегодня эта функция встроена во многие цифровые фотокамеры. «Нечеткая маска» (в виде математической модели) работает и в наших программах обработки, но средство это обоюдоострое. Результат зависит от выбора размера элементов. Если он мал, все низкие пространственные частоты будут потеряны, а изображение станет равномерно серым; например снимок Луны на рис. 5 станет «слепым». И наоборот, если размер нечеткой маски велик, исчезнут все мелкие детали.

Постоянной проблемой синтеза изображений неизвестной части Меркурия остается доказательство реальности обнаруженных деталей рельефа. Съемкой Mariner-10 были охвачены примерно меридиональные сегменты, 120-190°з.д. и 0-50°з.д. Для этих долгот подтверждение реальности деталей новых снимков можно получить сравнением полученных изображений с фотокартой. Но в остальных случаях доказательством реальности может быть только повторяемость деталей в независимо проведенных наблюдениях. В области долгот 210-350 з.д. поверхность Меркурия была неизвестна, поэтому единственным критерием реальности деталей оставалось их наличие на нескольких изображениях, синтезированных из независимых исходных групп электронных снимков.

В области долгот 210-350° з.д.

Наблюдения Меркурия выполнялись в различных обсерваториях, но всегда методом коротких экспозиций. Изображение (рис. 9 ) построено обработкой результатов наблюдений в вечерней элонгации, проведенных 1-2 мая 2002 г. в обсерватории Скинакас Ираклионского университета (о. Крит, Греция, 24°54" с.ш., 35°13" в.д.). Наблюдения выполнялись в ближнем ИК-диапазоне, 690-940 нм с помощью телескопа с диаметром 1,29 м и ПЗС-камеры с размером пикселя 7,4 × 7,4 мкм. Диск планеты 1-2.05.2002 был виден под углом 7,75 с дуги, с линейным размером 0,37 мм в фокальной плоскости телескопа и соответствовал на ПЗС-матрице всего 50 строкам. 2 мая фаза Меркурия была 97°. Использовались короткие экспозиции, в основном 1 мс.

На рисунке, выше центра, на терминаторе, выделяется крупное темное пятно. Это крупнейший бассейн на Меркурии. В ходе обработки наблюдений автор использовал для этого образования рабочее название — «Бассейн Скинакас» (по имени обсерватории, где был получен исходный материал), отнюдь не претендуя на его узаконивание. (Как известно, всем объектам на поверхности Меркурия Международный астрономический союз присваивает имена писателей, композиторов, художников и т. д.). Тем не менее, название «Бассейн Скинакас» (или «Море Скинакас», или «Бассейн S»), стало упоминаться на ряде конференций и в некоторых статьях. Бассейн S — наиболее крупное образование в области долгот 210-290° з.д. — имеет структуру, более напоминающую некоторые крупнейшие образования на обратной стороне Луны. Бассейн представляет собой, по-видимому, очень старое (возможно, древнейшее) образование на Меркурии, с сильно разрушенными валами, фактически создаваемыми границами других, менее крупных бассейнов. Бассейн Скинакас имеет, по-видимому, структуру, сходную с поверхностью известной по съемке Mariner-10 области Caloris Planitia , имеющей, вероятнее всего, ударное происхождение.

На рис. 10 приведен вид Бассейна Скинакас из работы 2003 г. Полного вида бассейна тогда не существовало, поэтому правая (восточная) часть рисунке создана на основе первых публикаций наших наблюдений 2002 г., а левая (западная) была взята из аналогичных публикаций (Dantowitz , et al., 2000; Baumgardner , et al., 2000, Astron J ., 2000), где она однажды была представлена фрагментарно. Диаметр внутренней части Бассейна Скинакас около 25° (1060 км). Диаметр различимого внешнего вала вдвое больший. Центр находится примерно у 8° с.ш., 275° з.д. Внутренний вал Бассейна Скинакас обладает более или менее правильной формой. На рисунке сравниваются размеры Бассейна Скинакас и равнины Caloris Planitia , также имеющей двойной вал. Бары показаны в одинаковом масштабе. По диаметру Бассейн Скинакас в 1,5 раза больше, чем Caloris Planitia . Как уже отмечалось, операция «нечеткой маски», требует компромиссного выбора. Поэтому реальный тон района бассейна темнее, чем на рисунке. По его периферии расположены вторичные образования; некоторые из них рассматриваются ниже.

В последующие годы предпринимались новые серии наблюдений; снова использовались телескопы Абастуманской обсерватории и обсерватории Скинакас. Наиболее совершенные изображения удалось получить лишь через 4 года, на основе наблюдений в ноябре 2006 г. в обсерватории САО РАН (Нижний Архыз, Карачаево-Черкесия, 43°39"11" с.ш., 41°26"29" в.д.), и снова благодаря удачным метеоусловиям. Преимуществом обсерватории САО в отношении наблюдений Меркурия является ее большая высота (2100 м) и сравнительно низкая широта. В числе главных задач новых наблюдений было получение общего вида Бассейна Скинакас, который в это время находился на освещенной стороне планеты. Достигнутый за прошедшие годы прогресс в обработке позволял надеяться на повышение разрешения изображений.

Методом коротких экспозиций в период 20-24 ноября 2006 г. удалось получить более 20 тыс. электронных снимков планеты в утренней элонгации, при «хорошем небе», как говорят астрономы. Угол фазы Меркурия изменялся в пределах от 103° до 80°, область наблюдаемых планетоцентрических долгот была 260-350° з.д. Наблюдения выполнялись с ПЗС-камерой на телескопе «Цейсс-1000» в ближнем инфракрасном диапазоне. Диск планеты был виден под углом от 6 до 7 с дуги. Путем обработки большого массива снимков, полученных с миллисекундными экспозициями, удалось получить достаточно четкое синтезированное изображение сектора поверхности Меркурия 260-350° з.д. Кроме Бассейна Скинакас, на синтезированных изображениях выделяется также ряд крупных ударных кратеров разного возраста и менее крупные образования. Предельное полученное разрешение не хуже формального дифракционного разрешения инструмента, около 80-100 км на поверхности Меркурия. Как и в случае наблюдений 2001 г., хорошие изображения появились при резком изменении метеоусловий (прекращение снежной пурги).

Предварительные результаты обработки наблюдений показаны на рис. 11 . Здесь можно видеть, как менялось положение и освещенность Бассейна Скинакас за пять дней. Левые части (а) представляют фазы планеты в указанные даты, справа (б) фазы показаны на глобусе планеты. Наиболее благоприятные метеоусловия наблюдений были 20 и 21 ноября 2006 г. Тогда же наиболее выгодным было и освещение: Солнце стояло низко над горизонтом бассейна, а тени подчеркивали его рельеф. Весь бассейн выделяется на среднем снимке (21 ноября 2006). Помимо бассейна, во всех показанных фазах примерно вдоль меридиана 310° з.д. вытянуты уже упоминавшиеся наиболее светлые кратеры. Самый яркий из них находится в северной части планеты, примерно у 65° с.ш. 330° з.д.

Первым сюрпризом оказалось крупное темное кратерное «море» настоящего лунного типа, обнаруженное на лимбе, южнее экватора. Вдоль лимба, от северного полюса до темного моря, тянется ряд светлых кратеров. На снимках вид Меркурия изменяется каждые сутки, что объясняется его быстрым орбитальным движением. Но не только. Как хорошо известно из лунных наблюдений, вид безатмосферного небесного тела при прохождении квадратуры быстро изменяется из-за так называемого эффекта оппозиции. Было интересно проследить, как трансформируется вид исследуемой планеты в этой выгодной фазе. Фазы Меркурия гораздо сложнее, чем у Луны, потому что его положение, в отличие от последней, не фиксировано и наблюдениям в любой фазе доступны, в принципе, все стороны планеты. В среднем поверхность Меркурия за сутки смещается относительно земного наблюдателя на 5°. Но и это его свойство не остается постоянным: из-за большого эксцентриситета орбиты, в некоторых ее частях, обращение обгоняет вращение планеты и суточное движение поверхности относительно Солнца останавливается и даже возвращается назад. В это время с терминатора Меркурия можно было бы наблюдать странную последовательность: восход и вскоре закат на востоке, снова восход, а затем всё повторяется в обратном порядке на западе.

Все подробности лучше видны на комбинированном рис. 12 , где для синтеза левой половины изображения в обработку были включены около 7800 исходных электронных снимков. На сером поле слева показана координатная сетка, а Бассейн Скинакас выделен кружком, что позволяет сравнить повторяющиеся восточные контуры бассейна. Поле бассейна охвачено валом более или менее правильной формы. В меридиональном направлении его протяженность равна 1300 км. Интересно, что по размерам, внутренняя часть бассейна в 1,5 раза превышает крупнейшее лунное Море Дождей, а внешняя имеет масштабы лунного Океана Бурь. В отличие от Бассейна Скинакас и Caloris Planitia , поверхность Моря Дождей представляет собой лавовое поле, формирование которого относится к древней эпохе глобальных лавовых излияний на Луне. Диаметр внешнего вала Бассейна Скинакас — около 0,5 диаметра всей планеты — делает его одним из крупнейших кратерных морей на планетах группы Земли. Нерегулярная форма внешнего вала, сравнительно правильная с восточной стороны, на севере нарушена объектом, с центром, находящимся у 30° с.ш. 280° з.д., а на юге — обширной менее темной областью, которая расположена между 255 и 280° з.д. и доходит до 30° ю.ш.

Меридиан, по которому проходит терминатор, на обеих половинах рисунка один и тот же, примерно 270° з.д. Здесь на широте 45-50° ю.ш., находится центр еще одного темного бассейна диаметром около 700 км, повторяющегося в обеих половинах рисунка. Яркий кратер у 65° с.ш., 330° з.д. имеет диаметр 90-100 км; с севера и юга к нему примыкают линейные структуры протяженностью 400-500 км. Такой вид выбросов из ударного кратера, возможно, связан с касательной траекторией ударника. Ограниченное разрешение снимка не позволяет достоверно судить о его деталях; возможно, сам кратер находится на протяженной светлой области.

Как уже отмечалось, выделение подробностей изображений при обработке исходных снимков идет в ущерб низким пространственным частотам. Иными словами, оттенки очень темных или светлых протяженных областей на рисунке приглушены, что позволяет выделить другие детали, например, ударные кратеры средних и крупных размеров. Среди них наиболее заметен пятиугольный 750-километровый кратер с центром у 32° ю.ш. 260° з.д. и примыкающий к нему с севера 650-километровый кратер (рис. 13 ). Таких кратеров найдено много.

В заключение приводится наиболее удачное изображение сектора 270-350° з.д., полученное методами, которые рассматривались выше, с кропотливым отбором снимков, полученных в моменты наилучшего прояснения (рис. 14 ). Разрешение составляет 60-70 км на точку. Низкие пространственные частоты здесь подавлены. Изображения а и б отличаются только уровнем контрастности. Наряду с «классическими» ударными кратерами, выбросами и лучами на снимке присутствуют элементы, ранее на других планетах не встречавшиеся. Прежде всего, это четыре или пять серых полос, шириной по 250 и протяженностью до 2000 км. Полосы неким образом связаны с крупными кратерами, но природа их пока неясна. Сам снимок вполне сравним со снимками с космических аппаратов, но стоит несравнимо дешевле. Астрономы-звездники уже всерьез считают метод спеклов (он же метод коротких экспозиций) серьезным конкурентом весьма затратным космическим исследованиям.

В области долгот 210-350° з.д. поверхность Меркурия была неизвестна. Уже упоминалось, что критерием реальности деталей оставалось их наличие на нескольких независимых изображениях. Приведенные выше новые изображения поверхности планеты покрывают почти всю часть поверхности планеты, остававшейся не заснятой камерой Mariner-10 , а исследованный сектор 260-350° з.д. обладает более интересным рельефом по сравнению с ранее картированными сравнительно гладкими районами. Если природа возникновения Бассейна Скинакас была подобна лунной, то остается непонятным, почему его границы так резко отличаются от четких очертаний лунных лавовых морей. Относительные скорости импакторов на орбите Меркурия были почти в 1,6 раз выше, чем на орбите Земли/Луны, а энергия соударений была выше в 2,5 раза. Поэтому можно было ожидать, что Бассейн Скинакас и другие крупные темные образования будут иметь столь же резкие очертания, как и лунные бассейны, а бассейн Caloris Planitia является исключением. Но почему-то таких границ нет.

Полученные изображения, как и снимки, сделанные камерами космических аппаратов, указывают на особенности событий на поверхности Меркурия в период максимума ее метеоритной бомбардировки. В какой-то мере эти особенности могут быть связаны с составом и, возможно, строением коры этого небесного тела. Вместе с тем, снимки Меркурия возвращают ученых к давнему и нерешенному вопросу: почему протяженные детали рельефа, такие как лунные «моря» или океаны Земли, распределены по поверхности планетных тел асимметрично и собираются на одной стороне? Как известно, такая же необъясненная асимметрия наблюдается и на других планетах земной группы. Она присутствует и на многих спутниках планет-гигантов, а не только на Луне. По-видимому, то же можно наблюдать и на поверхности Меркурия. Протяженные детали рельефа, такие как Бассейн Скинакас и другие темные бассейны, по планете распределены явно асимметрично и сосредоточены они главным образом в области долгот 250-330° з.д. Происхождение асимметрии лунного рельефа имеет некоторые особенности, но к рельефу Меркурия и других планет земной группы они не относятся. Что же стоит за этой асимметрией?