Что такое сжиженный природный газ (СПГ)? Как сжижать газы? Производство и использование сжиженного газа.

Инструкция

На вид сжиженный природный газ (СПГ) - это бесцветная жидкость без и запаха, на 75-90% состоящая и обладающая очень важными свойствами: в жидком состоянии он не горюч, не и не агрессивен, что крайне важно при транспортировке. Процесс сжижения СПГ имеет характер, где каждая новая ступень означает сжатие в 5-12 раз, после чего следует охлаждение и переход на следующую ступень. СПГ становится жидким по завершению последней стадии сжатия.

Если же газ необходимо транспортировать на очень большие расстояния, то гораздо выгоднее использовать специальные суда – танкеры-газовозы. От места газа до ближайшего подходящего места на морском побережье протягивают трубопровод, а на берегу строят терминал. Там газ сильно сжимают и охлаждают, переводя в жидкое состояние, и закачивают в изотермические емкости танкеров (при температурах порядка -150оС).

Этот способ транспортировки имеет ряд преимуществ перед трубопроводным. Во-первых, один подобный за один рейс может перевезти громадное количество газа, ведь плотность вещества, находящегося в жидком состоянии, гораздо выше. Во-вторых, основные расходы приходятся не на транспортировку, а на погрузку-разгрузку продукта. В-третьих, хранение и перевозка сжиженного газа гораздо безопаснее, чем сжатого. Можно не сомневаться, что доля природного газа, транспортируемого в сжиженном виде, будет неуклонно возрастать по сравнению с газопроводными поставками.

Сжиженный природный газ востребован в различных областях деятельности человека - в промышленности, в автомобильном транспорте, в медицине, в сельском хозяйстве, в науке и пр. Немалую популярность сжиженные газ ы завоевали за счет удобства их использования и транспортировки, а также экологической чистоты и невысокой стоимости.

Инструкция

Перед сжижением углеводородного газ а его необходимо предварительно очистить и удалить водяной пар. Углекислый газ удаляют, используя систему трехступенчатых молекулярных фильтров. Очищенный таким образом газ в небольших количествах используется в качестве регенерационного. Восстанавливаемый газ либо сжигается, либо применяется для получения в генераторах мощности.

Просушивание происходит с помощью 3-х молекулярных фильтров. Один фильтр поглощает водяной пар. Другой сушит газ , который далее и проходит через третий фильтр. Для понижения температуры газ пропускается через водяной охладитель.

Азотный способ подразумевает производство сжиженного углеводородного газ а из любых газ овых источников. К преимуществам этого метода можно отнести простоту технологии, уровень безопасности, гибкость , легкость и малозатратность эксплуатации. Ограничения этого метода - необходимость источника электроэнергии и высоких капитальных затрат.

При смешанном способе производства сжиженного газ а в качестве хладагента используют смесь азота и . Получают газ также из любых источников. Этот метод отличается гибкостью производственного цикла и небольшими переменными затратами на производство. Если сравнивать с азотным способом сжижения, здесь капитальные затраты более существенны. Также необходим источник электроэнергии.

Источники:

  • Что такое сжижение газов?
  • Сжиженный газ: получение, хранение и транспортировка
  • что такое сжиженный газ

Природный газ добывается из недр Земли. Это полезное ископаемое состоит из смеси газообразных углеводородов, которая образуется в результате разложения органических веществ в осадочных породах земной коры.

Какие вещества входят в состав природного газа

На 80-98% природный газ состоит (CH4). Именно физико-химические свойства метана определяют характеристики природного газа. Наряду с метаном в составе природного газа присутствуют соединения такого же структурного типа – этан (C2H6), пропан (C3H8) и бутан (C4H10). В некоторых случаях в небольших количествах, от 0,5 до 1%, в природном газе обнаруживаются: (С5Н12), (С6Н14), гептан (С7Н16), (С8Н18) и нонан (С9Н20).

Также природный газ включает в себя соединения сероводорода (H2S), углекислого газа (CO2), азот (N2), гелий (He), водяные пары. Состав природного газа зависит от характеристик месторождений, где он добывается. Природный газ, добываемый в чисто газовых месторождениях, состоит в основном из метана.

Характеристики составляющих природного газа

Все химические соединения, входящие в состав природного газа, обладают рядом свойств, полезных в различных сферах промышленности и в быту.

Метан – горючий газ без цвета и запаха, он легче воздуха. Используется в промышленности и быту в качестве горючего. Этан – горючий газ без цвета и запаха, он немного тяжелее воздуха. В основном, из получают этилен. Пропан – ядовитый газ без цвета и запаха. Ему по свойствам близок бутан. Пропан используется, например, при сварочных работах, при переработке металлолома. Сжиженным и бутаном заправляют зажигалки и газовые баллоны. Бутан используют в холодильных установках.

Пентан, гексан, гептан, октан и нонан – . Пентан в небольших количествах входят в состав моторных топлив. Гексан также используется при экстрагировании растительных масел. Гептан, гексан, октан и нонан являются хорошими органическими растворителями.

Сероводород – ядовитый бесцветный тяжелый газ, тухлых яиц. Этот газ даже в маленькой концентрации вызывает паралич обонятельного нерва. Но в силу того, что сероводород обладает хорошими антисептическими свойствами, его в малых дозах применяют в медицине для сероводородных ванн.

Углекислый газ – негорючий бесцветный газ без запаха с кислым вкусом. Углекислый газ используют в пищевой промышленности: в производстве газированных напитков для насыщения их углекислотой, для заморозки продуктов, для охлаждения грузов при транспортировке и т.п.

Азот – безвредный бесцветный газ, без вкуса и запаха. Применяют его в производстве минеральных удобрений, используют в медицине и т.п.

Гелий – один из самых легких газов. Он не имеет цвета и запаха, не горит, не токсичен. Гелий используют в различных областях промышленности – , для охлаждения атомных реакторов, наполнения стратостатов.

Опытный факт охлаждения вещества при испарении был известен издавна и даже практически использовался (например, применение пористых сосудов для сохранения свежести воды). Но первое научное исследование этого вопроса предпринял Джан Франческо Чинья и описал в работе 1760 г. «De frigore ex evaporationе» («О холоде вследствие испарения»).

Чинья доказал, что чем быстрее происходит испарение, тем интенсивнее остывание, а Меран показал, что если дуть на влажный шарик термометра, понижение температуры окажется больше, чем при таком же опыте с сухим шариком термометра. Антуан Боме (1728—1804) обнаружил, что при выпаривании серного эфира охлаждение происходит сильнее, чем при испарении воды. Основываясь на этих фактах, Тиберио Кавалло создал в 1800 г. холодильную машину, а Волластон построил в 1810 г. свой известный криофор, применяемый и в наше время. На основе этого прибора в 1820 г. был создан гигрометр Даниэля. Холодильная машина стала практически применимой лишь после 1859 г., т. е. после того, как Фернан Карре (1824— 1894) опубликовал свой метод получения льда с помощью испарения эфира, впоследствии замененного аммиаком. В 1871 г. Карл Линде (1842—1934) описал созданную им холодильную машину, в которой охлаждение достигается за счет расширения газа. В 1896 г. он скомбинировал эту машину с противоточным теплообменником, описываемым в курсах физики, и это позволило ему получить жидкий водород. Достигнутые к тому времени физиками экспериментальные результаты начали внедряться в промышленность.

Проблема сжижения газов имеет вековую историю, берущую свое начало во второй половине XVIII столетия. Началось все с сжижения аммиака простым охлаждением, которое произвел ван Марум, серного ангидрида — Монж и Клуэ, хлора — Нортмор (1805 г.) и сжижения аммиака компрессионным методом, предложенным Баччелли (1812 г.).

Определяющий вклад в решение этой проблемы одновременно и независимо внесли Шарль Каньяр де Латур (1777—1859) и Майкл Фарадей (1791—1867).

В серии работ, опубликованных в 1822 и 1823 гг., Каньяр де Латур описал опыты, проведенные им для определения существования для жидкости (как это чувствуется интуитивно) некоторого предельного расширения, дальше которого независимо от приложенного давления вся она переходит в парообразное состояние. С этой целью де Латур положил в котел, заполненный на одну треть спиртом, каменный шар и начал постепенно разогревать котел. По шуму, производимому шаром, поворачивавшимся внутри котла, де Латур пришел к выводу, что при определенной температуре весь спирт испарился. Опыты были повторены с небольшими трубками; из трубок удалялся воздух, а затем они заполнялись на 2/5 исследуемой жидкостью (спирт, эфир, бензин) и нагревались в пламени. По мере увеличения температуры жидкость становилась все более подвижной, а граница раздела жидкости и пара все более нечеткой, пока при определенной температуре совсем не исчезала и вся жидкость казалась превратившейся в пар. Соединив эти трубки с манометром со сжатым воздухом, Каньяр де Латур сумел измерить давление, устанавливающееся в трубке в момент, когда исчезает граница раздела между жидкостью и паром, и соответствующую температуру. Вопреки бытующему представлению Каньяр де Латур не только не определил в этих опытах критическую температуру для воды, ему не удалось даже полностью испарить воду, потому что трубки всегда лопались раньше, чем достигался желаемый эффект.

Более конкретный результат содержали опыты Фарадея, проведенные в 1823 г. с загнутыми стеклянными трубками, более длинное плечо, которых было запаяно. В это плечо Фарадей помещал вещество, которое при нагреве должно было давать исследуемый газ, затем закрывал второе, короткое плечо трубки и погружал трубку в охлаждающую смесь. Если, проделав это, нагревать вещество в длинном плече трубки, то образуется газ, давление которого постепенно увеличивается, причем во многих случаях в короткой трубке у Фарадея происходило сжижение газа. Так, нагревая бикарбонат натрия, Фарадей получил жидкую углекислоту; таким же способом он получал жидкий сероводород, хлористый водород, серный ангидрид и др.

Опыты де Латура и Фарадея показали, что можно добиться сжижения газа, подвергая его высокому давлению. В этом направлении начали работать многие физики, в частности Иоганн Наттерер (1821—1901). Однако некоторые газы (водород, кислород, азот) сжижить таким путем не удавалось. В 1850 г. Вертело подверг кислород давлению в 780 атм, но не смог добиться сжижения. Это заставило Вертело присоединиться к мнению Фарадея, который, уверенный, что рано или поздно удастся получить твердый водород, полагал, что одного давления недостаточно для сжижения некоторых газов, прозванных тогда «перманентными» или «неукротимыми».

В том же 1845 г., когда Фарадей высказал это соображение, Реньо, заметив, что при низкой температуре углекислый газ обладает аномальной сжимаемостью, а при приближении к 100° С начинает следовать закону Бой-ля, выдвинул предположение, что для каждого газа существует некая область температур, где он подчиняется закону Бойля. В 1860 г. эту идею Реньо развил и модифицировал Дмитрий Иванович Менделеев (1834—1907), согласно которому для всех жидкостей должна существовать «абсолютная температура кипения», выше которой она может существовать лишь в газообразном состоянии, каково бы ни было давление.

Исследование этого вопроса было возобновлено в 1863 г. в новой форме Томасом Эндрюсом (1813—1885). В 1863 г. Эндрюс ввел в капиллярную трубку углекислый газ, заперев объем газа столбиком ртути. С помощью винта он произвольно устанавливал давление, под которым находился газ, одновременно меняя постепенно температуру. Добившись с помощью одного лишь увеличения давления частичного сжижения газа и затем медленно нагревая трубку, Эндрюс наблюдал те же явления, которые за 30 лет до него исследовал Каньяр де Латур. Когда температура углекислоты достигала 30,92° С, граница раздела между жидкостью и газом исчезала и никаким давлением нельзя было уже получить обратно жидкую углекислоту. В своей обстоятельной работе 1869 г. Эндрюс предложил назвать температуру 30,92° С «критической точкой» для углекислоты. Таким же методом он определил критические точки для хлористого водорода, аммиака, серного эфира, окиси азота. Термин «пар» он предложил сохранить для газообразных веществ, находящихся при температуре ниже критической точки, а термин «газ» применять к веществам, находящимся при температуре выше критической точки. Подтверждением этой точки зрения Эндрюса являлись упомянутые уже опыты Наттерера, проведенные им с 1844 по 1855 г., в которых перманентные газы подвергались давлению до 2790 атм, так и не сжижаясь, и многочисленные аналогичные опыты, начатые в 1870 г. Эмилем Амага (1841—1915), в которых достигалось давление до 3000 атм.

Все эти отрицательные результаты опытов подтверждали гипотезу Эндрюса о том, что перманентные газы — это вещества, для которых критическая температура ниже достигнутых в тот момент значений, так что их сжижение можно было бы осуществить с помощью предварительного глубокого охлаждения, возможно с последующим сжатием. Эта гипотеза была блестяще подтверждена в 1877 г. Луи Кальете (1832—1913) и Раулем Пикте (1846—1929), которым независимо друг от друга удалось после предварительного сильного охлаждения добиться сжижения кислорода, водорода, азота, воздуха. Работы Кальете и Пикте были продолжены другими физиками, но лишь появление холодильной машины Линде, о которой мы уже упоминали, сделало методы сжижения практически доступными, позволив получать сжиженные газы в больших количествах и широко применять их при научных исследованиях и в промышленности.

УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ГАЗОВ

Методы определения удельной теплоемкости трудно было применить к газообразным веществам вследствие малого удельного веса газов и паров. Поэтому в начале XIX века Парижская Академия наук объявила конкурс на лучший метод измерения удельной теплоемкости газа. Премия была присуждена Франсуа Деларошу (? — 1813?) и Жаку Берару (1789—1869), предложившим поместить в калориметр змеевик, по которому при известной температуре проходил бы газ при фиксированном давлении. Этот метод фактически не был новым; он был предложен еще за 20 лет до того Лавуазье. Как бы то ни было, результаты, полученные Деларошем и Бераром, приводились в курсах физики в течение полувека. Заслуга этих ученых прежде всего в том, что было привлечено внимание к необходимости различать удельные теплоемкости при постоянном давлении и при постоянном объеме. Последняя величина очень трудно поддается измерению из-за малой величины теплоемкости газа по сравнению с теплоемкостью содержащего его резервуара.

Но за несколько лет до появления работ Делароша и Берара началось исследование любопытного явления, отмеченного Эразмом Дарвином (1731—1802) в 1788 г., а затем в 1802 г. Дальтоном и заключающегося в том, что сжатие воздуха вызывает его разогрев, а расширение приводит к охлаждению. Началом исследования этого явления обычно считают опыт Гей-Люссака (1807 г.), повторенный Джоулем в 1845 г. Гей-Люссак соединил трубкой два баллона, подобно тому как это делал Герике; один из баллонов был наполнен воздухом, а второй пустой; из наполненного баллона воздух мог свободно перетекать в пустой. В результате было установлено понижение температуры первого баллона и повышение температуры второго. Такое тепловое поведение воздуха заставляло считать, что удельная теплоемкость при постоянном давлении должна быть больше, чем при постоянном объеме, какой бы теории природы тепла мы ни придерживались. Действительно, если, расширяясь, газ охлаждается, то, позволяя ему при нагреве расширяться, необходимо сообщить ему дополнительное тепло, чтобы скомпенсировать сопутствующее расширению охлаждение.

Исходя из этих экспериментальных фактов, Лаплас в 1816 г. пришел к гениальной идее о том, что известное несоответствие между значением скорости звука, получающимся из опыта, и его теоретическим значением, получающимся из закона Ньютона, можно объяснить изменением температуры, которое испытывают слои воздуха при чередующихся сжатиях и разрежениях. На основе этих теоретических предпосылок Лаплас исправил формулу Ньютона, введя в нее коэффициент, равный отношению удельных теплоемкостей при постоянном давлении и при постоянном объеме для воздуха. Сопоставление экспериментального значения скорости звука в воздухе и теоретического значения, получающегося по формуле Ньютона, позволило найти отношение удельных теплоемкостей. Таким косвенным путем физикам удалось получить первые данные о значении этого отношения и тем самым, поскольку значение удельной теплоемкости при постоянном давлении было известно, оценить удельную теплоемкость воздуха при постоянном объеме. Несколькими годами позже (1819 г.) Никола Клеману (1779—1841) и Шарлю Дезорму (1777—?) удалось в опытах по расширению газов, многократно повторяющихся другими учеными вплоть до наших дней и вошедших во все учебники по физике, непосредственно определить отношение теплоемкостей, которое в пределах экспериментальных ошибок совпало с найденным Лапласом.

В 1829 г. в результате тонких и кропотливых исследований Дюлонг определил отношение теплоемкостей для различных газов, для чего вызывал звук в трубке с помощью потоков различных газов. Эти эксперименты заставили его прийти к выводу, что в газах и парах при равных условиях (объем, давление, температура) образуется при одинаковом относительном сжатии или расширении одинаковое количество теплоты.

Заметим, что метод Дюлонга был существенно улучшен в 1866 г. Кундтом (1839—1894), который ввел специальную трубку (эта трубка называется теперь трубкой Кундта). Метод Кундта до сих пор считается одним из лучших методов определения отношения удельных теплоемкостей.

Составитель Савельева Ф.Н.

ГАЗ . Газообразным состоянием называется такое состояние вещества, в котором силы, действующие между молекулами, чрезвычайно малы и размеры самих молекул ничтожны сравнительно с промежутками между ними. Между столкновениями молекулы газа двигаются прямолинейно, равномерно и совершенно беспорядочно. При нагревании и разрежении все газы стремятся к предельному состоянию так называемого идеального , или совершенного газа .

В идеальном газе междумолекулярные силы равны нулю, и объем самих молекул бесконечно мал сравнительно с объемом междумолекулярного пространства. Состояние идеального газа является тем предельным разведенным состоянием вещества, к которому стремятся все тела природы при достаточно высоких температурах и достаточно низких давлениях; в этом и заключается особое значение состояния идеального газа, к тому же наиболее просто поддающегося исследованию и потому полнее всего изученного. Вещество, в крайнем разрежении заполняющее межпланетное пространство, может считаться находящимся в состоянии идеального газа.

Газовое давление (р) обусловливается ударами молекул газа о стенки сосуда. Согласно кинетической теории, средняя кинетическая энергия молекул газа пропорциональна абсолютной температуре. В кинетической теории показывается, что идеальный газ строго подчиняется следующему уравнению состояния, связывающему три параметра состояния: v, T и р, из которых два являются независимыми, а третий - их функцией:

Это уравнение (уравнение Клапейрона ) заключает в себе в явной форме три основных закона состояния идеального газа:

1) Закон Бойля-Мариотта . При постоянной температуре (Т) произведение (p∙v) для данного количества идеального газа есть величина постоянная (p∙v = Const), т. е. объем идеального газа (v) обратно пропорционален его давлению (р): изотермы идеального газа в системе координат (v, р) являются равнобокими гиперболами, асимптотами которых служат оси координат.

2) . При постоянном (р) объем данного количества идеального газа линейно возрастает с температурой:

(v 0 - объем при температуре = 0°С, α - коэффициент расширения идеального газа). Изменение (p) с температурой при v = Const подчиняется такому же закону:

(α) в уравнении (3) - коэффициент давления, численно равный коэффициенту расширения (α) в уравнении (2) = 1/273,1 = 0,00367 - величина, независящая от природы газа и одинаковая для всех идеальных газов; р 0 - давление при температуре = 0°С. Вводя вместо температуры абсолютную температуру

находим вместо уравнений (2) и (3):

3) Закон Авогадро . Из уравнения (1) видно, что газовая постоянная R = p 0 ∙v 0 /273,1 пропорциональна нормальному объему v 0 , занимаемому данным количеством газа при нормальных условиях (р 0 = 1 Atm и t 0 = 0°С = 273,1° К), т. е. обратно пропорциональна плотности газа при нормальных условиях D 0 . По закону Авогадро, при одинаковых (р) и (Т) все идеальные газы содержат в равных объемах (например, равных v 0) равное число молекул. Обратно: равное число молекул (например, 1 моль = 1 граммолекуле) всякого газа в идеальном состоянии занимает один и тот же объем v 0 при нормальных условиях, независимо от природы газа (в 1 моле всякого вещества содержится N 0 = 6,06∙10 23 отдельных молекул - число Авогадро ). Найдено с большой точностью, что нормальный молярный объем любого идеального газа (V 0) м равен 22,412 литр/моль. Отсюда можно рассчитать число молекул в 1 см 3 любого идеального газа при нормальных условиях: n0 = 6,06∙10 23 /10 3 ∙22,416 = 2,705∙10 19 см 3 (число Лошмита ). При помощи уравнения (1) закон Авогадро выражается в том, что газовая постоянная R при расчете на 1 моль любого газа будет одна и та же, независимо от природы газа. Т. о. R является универсальной постоянной с размерностью [работа ]/[масса ][температура ] и выражает работу расширения 1 моля идеального газа при нагревании его на 1°С при р = Const:

в этом и состоит физическое значение R.

находим числовое значение

В других единицах значения R (на 1 моль) таковы:

Кроме разобранных трех законов, из уравнения (1) состояния идеального газа в соединении с двумя началами термодинамики следуют еще такие основные законы:

4) Закон Джоуля . Одно из общих уравнений термодинамики

дает вместе с уравнением (1) следующие условия для внутренней энергии U идеального газа:

т. е. U идеального газа есть функция только Т (закон Джоуля); при изотермическом расширении идеального газа все поглощаемое тепло переходит во внешнюю работу, а при изотермическом сжатии вся расходуемая работа - в выделяющееся тепло.

5) Теплоемкости идеального газа при постоянном объеме c v и при постоянном давлении с р являются функциями одной лишь Т. Термодинамика дает общие уравнения

но для идеального газа (р) и (v) линейно зависят от (Т), по закону Гей-Люссака (4) и (5); следовательно, правые части уравнений (9) обращаются в 0 и

Теплоемкости с р и c v не независимы друг от друга, но связаны для идеального газа простым условием:

вытекающим из газовых законов (R имеет размерность теплоемкости), т. е., если с р и c v относить к 1 молю идеального газа, то они разнятся между собой на 2 (точнее - на 1,986) – cal/моль∙град.

В кинетической теории принимается, по принципу равномерного распределения энергии, что на каждую степень свободы газовой молекулы приходится энергия k 0 ∙Т/2, а на 1 моль приходится

(k 0 = –R/N 0 есть газовая постоянная, рассчитанная на 1 молекулу - постоянная Больцмана ). Числом степеней свободы (i) называется число независимых друг от друга видов механической энергии, которой обладает молекула газа. Тогда энергия 1 моля

(приближенно, считая R = 2, c v = i, с р = i+2).

В учении о газе важную роль играет отношение c p /c v = γ; из уравнений (11) и (12):

В простейшем случае одноатомного газа (молекула которого состоит из 1 атома, каковы благородные газы и пары многих металлов) i наименьшее и равняется 3: вся энергия молекулы сводится к кинетической энергии ее поступательных движений, которые могут совершаться по трем независимым взаимно перпендикулярным направлениям; тогда

а γ имеет наибольшую возможную величину: γ = 5/3 = 1,667. Для двухатомных газов (Н 2 , O 2 , N 2 , СО и другие) можно считать I = 3+2 (два вращения вокруг двух взаимно перпендикулярных осей, перпендикулярных к линии, соединяющей оба атома); тогда c v = 4,96 ≈ 5, cр = 6,95 ≈ 7 и γ = 7/5 = 1,40. Для трехатомного газа (Н 2 O, СO 2 , H 2 S, N 2 O)i = 3+3 (вращение вокруг трех взаимно перпендикулярных осей) и c v = 5,96 ≈ 6, cр = 7,95 ≈ 7 и γ = 4/3 = 1,33.

При дальнейшем усложнении строения молекулы, т. е. с увеличением i, возрастают c v и с р, а γ = 1 + 2/i и стремится к 1. Табл. 1 показывает, что все сказанное хорошо согласуется с данными опыта, что γ всегда >1 и ≤1,667 и не может быть = 1,50 (для i = 4).

Для одноатомных газов c v и с р, в соответствии с теорией, практически не изменяются с температурой (так, для Ar значения c v и с р лежат в пределах от 2,98 до 3,00 между температурами = 0° и 1000° С). Изменения c v и с р с температурой находят объяснение в теории квант. Впрочем, теплоемкости газов, близких к идеальным, практически почти не изменяются в широких интервалах температуры. Экспериментально определяются обычно с р и у, a c v вычисляется из этих данных.

Реальные газы . Все газы, существующие в действительности, - реальные газы б. или м. уклоняются от законов идеальных газов, но тем меньше, чем выше температура и чем ниже давление. Т. о. законы идеальных газов являются для реальных газов предельными. При обычной температуре уклонения меньше всего у газов, критические температуры которых чрезвычайно низки (т. н. постоянные газы: Не, Н 2 , N 2 , О 2 , воздух); у газов же со сравнительно высокой критической температуры и у паров (паром называется газ при температуре меньше критической температуры) уклонения бывают очень значительны. Причины уклонений реальных газов от газовых законов заключаются в том, что: 1) в них действуют междумолекулярные силы; поэтому поверхностные молекулы втягиваются внутрь газов силами, равнодействующая которых, рассчитанная на единицу поверхности и направленная перпендикулярно к ней, называется молекулярным (внутренним) давлением К ; 2) не весь объем газа (v), а только часть его (v-b) дает свободу для движений молекул; часть объема (b), коволюм , как бы занята самими молекулами. Если бы газ был идеальным, его давление было бы больше наблюдаемого (р) на величину К; поэтому уравнение состояния реального газа напишется в виде.

В этом общем уравнении К и b могут зависеть от Т и v.

Ван-дер-Ваальс показал, что в простейшем случае К = a/v 2 , а b - величина постоянная, равная учетверенному объему самих молекул газа. Таким образом, уравнение Ван-дер-Ваальса имеет вид:

а и b, константы Ван-дер-Ваальса, как показывает опыт, все же зависят от T и v, и потому уравнение (15) является лишь первым приближением; оно хорошо передает качественную форму изотерм реальных газов.

На фиг. 1 изображены для СO 2 теоретической изотермы: S-образные части этих изотерм отвечают термодинамически метастабильным состояниям .

На фиг. 2 изображены для СО 2 экспериментальные изотермы: S-образные части кривых заменены прямолинейными частями; справа от этих частей кривые соответствуют газу (ненасыщенному пару), слева - жидкости, а сами прямолинейные отрезки - равновесию пара и жидкости. Уравнение (15), в полном согласии с опытом, показывает, что с повышением температуры размеры прямолинейных отрезков на изотермах делаются все меньше (фиг. 2) и, наконец, при некоторой температуре равной критической температуре длина этого отрезка обращается в 0. При температуре большей критической температуры газ не может обращаться в жидкость ни при каких давлениях: жидкость перестает существовать. Т. о. уравнение Ван-дер-Ваальса охватывает два состояния - газообразное и жидкое - и служит основанием для учения о непрерывности перехода между этими двумя состояниями. Критические температуры для некоторых газов имеют следующие значения: +360°С для Н 2 О, +31°С для СО 2 , –241°С для Н 2 и –254°С для Не.

Сжижение газа . Всякий газ можно обратить в жидкость надлежащим давлением, предварительно охладив его ниже критической температуры. Необходимые для сжижения СО 2 давления (в Atm) при разных температурах приведены в табл. 2.

Понятно, что эти давления являются давлениями насыщенного пара жидкой углекислоты и тем ниже, чем ниже температура.

Чтобы предварительно сильно охладить газ для сжижения, в технических установках пользуются эффектом Джоуля-Томсона, заключающимся в том, что при адиабатическом расширении (например, при резком падении давления, когда газ вытекает из отверстия) внутренняя энергия газа возрастает на ΔU, а Т изменяется на ΔТ, причем термодинамически

В случае идеальных газов ΔU = 0 и ΔТ = 0 [так как, по уравнению (1), T∙dv/dT – v = 0].

Для реальных газов ΔТ ≠ 0, т. е. происходит охлаждение или нагревание, смотря по тому, будет ли T∙dv/dT – v ≠ 0 (Δp < 0). По уравнению Ван-дер-Ваальса,

(с достаточным приближением). Т. о. при достаточно высоких температурах все газы при адиабатическом расширении нагреваются (ΔТ > 0, т. к. a/R∙T< b), но с понижением температуры для каждого газа наступает инверсионная точка Т i , определяемая условием

ниже которой газы начинают охлаждаться при адиабатическом расширении (a/R∙T> b при Т < Т i). Для всех газов, кроме Н 2 и Не, Т i лежит выше обычных температур (так, для воздуха Т i соответствует +360°С), и потому газы могут быть сжижены по принципу Линде , без предварительного охлаждения. Для Н 2 инверсионная точка Т i - 80,5°С, а для Не - даже 15°К; поэтому Н 2 и Не для сжижения д. б. предварительно охлаждены ниже этих температур.

Соответственные состояния . Критические температура Т к, давление р к и объем v к м. б. выражены через константы Ван-дер-Ваальса а, b и R следующим образом:

Если за единицы измерения Т, р и v принять соответственно критические величины, то вместо Т, р и v состояние будет характеризоваться приведенными величинами :

Если ввести θ, π и ϕ в уравнение Ван-дер-Ваальса (15), то константы а, b и R сократятся, и получится приведенное уравнение состояния , с численными коэффициентами

вовсе не содержащее величин, зависящих от природы вещества. Уравнение (19) предполагает, однако, правильность уравнения Ван-дер-Ваальса, и потому уклонения от него часто весьма значительны, особенно в случае ассоциированных веществ. Учение о соответственных состояниях (так называются состояния, отвечающие одинаковым θ, π и ϕ) дает возможность находить большое число универсальных зависимостей, подобных уравнению (19).

Применение газов . Сжатые и сжиженные газы применяются в технике всюду, где нужны значительные количества газа в небольшом объеме; так, СО 2 применяется для газирования вод, Сl 2 и фосген - в военно-химическом деле, O 2 - для медицинских целей, сжатый воздух - для пуска двигателей внутреннего сгорания. Особенное значение сжиженные газы (СО 2 и NH 3) имеют в холодильном деле, в холодильных машинах (например, для получения искусственного льда). Легкие газы (Н 2 , светильный газ, в последнее время Не) применяются для наполнения аэростатов . Инертные газы (N 2 и благородные газы, особенно Аr) применяются для наполнения полуваттных ламп накаливания. Особняком стоит применение газа для освещения или в качестве топлива: светильный, силовой, водяной газы и другие.

Крупномасштабное производство сжиженного природного газа

Преобразование природного газа в жидкое состояние осуществляется в несколько этапов. Сначала удаляются все примеси - прежде всего, двуокись углерода, а иногда и минимальные остатки соединений серы. Затем извлекается вода, которая в противном случае может превратиться в ледяные кристаллы и закупорить установку сжижения.

Как правило, в последнее время для комплексной очистки газа от влаги, углекислого газа и тяжелых углеводородов используют адсорбционный способ глубокой очистки газа на молекулярных ситах.

Следующий этап - удаление большинства тяжелых углеводородов, после чего остаются главным образом метан и этан. Затем газ постепенно охлаждается, обычно с помощью двухцикличного процесса охлаждения в серии теплообменников (испарителей холодильных машин). Очистка и фракционирование реализуются, как и основная доля охлаждения, под высоким давлением. Холод производится одним или несколькими холодильными циклами, позволяющими снизить температуру до -160°С. Тогда он и становится жидкостью при атмосферном давлении.

сжиженный природный газ производство

Рисунок 1.Процесс сжижения природного газа (получение СПГ)

Сжижение природного газа возможно лишь при охлаждении его ниже критической температуры. Иначе газ не сможет быть превращен в жидкость даже при очень высоком давлении. Для сжижения природного газа при температуре, равной критической (Т = Т кр), давление его должно быть равным или больше критического, т. е. Р > Ркт. При сжижении природного газа под давлением ниже критического (Р < Ркт) температура газа также должна быть ниже критической.

Для сжижения природного газа могут быть использованы как принципы внутреннего охлаждения, когда природный газ сам выступает в роли рабочего тела, так и принципы внешнего охлаждения, когда для охлаждения и конденсации природного газа используются вспомогательные криогенные газы с более низкой температурой кипения (например кислород, азот, гелий). В последнем случае теплообмен между природным газом и вспомогательным криогенным газом происходит через теплообменную поверхность.

При промышленном производстве СПГ наиболее эффективными являются циклы сжижения с использованием внешней холодильной установки (принципы внешнего охлаждения), работающей на углеводородах или азоте, при этом сжижается почти весь природный газ. Широкое распространение получили циклы на смесях хладагентов, где чаще других используется однопоточный каскадный цикл, у которого удельный расход энергии составляет 0,55-0,6 кВт" ч/кг СПГ.

В установках сжижения небольшой производительности в качестве холодильного агента используется сжижаемый природный газ, в этом случае применяют более простые циклы: с дросселированием, детандером, вихревой трубой и др. В таких установках коэффициент сжижения составляет 5-20 %, а природный газ необходимо предварительно сжимать в компрессоре.

Сжижение природного газа на основе внутреннего охлаждения может достигаться следующими способами:

* изоэнтальпийным расширением сжатого газа (энтальпия i = const), т. е. дросселированием (использование эффекта Джоуля-Томсона); при дросселировании поток газа не производит какой либо работы;

* изоэнтропийным расширением сжатого газа (энтропия S-const) с отдачей внешней работы; при этом получают дополнительное количество холода, помимо обусловленного эффектом Джоуля-Томсона, так как работа расширения газа совершается за счет его внутренней энергии.

Как правило, изоэнтальпийное расширение сжатого газа используется только в аппаратах сжижения малой и средней производительности, в которых можно пренебречь некоторым перерасходом энергии. Изоэнтропийное расширение сжатого газа используется в аппаратах большой производительности (в промышленных масштабах).

Сжижение природного газа на основе внешнего охлаждения может достигаться следующими способами:

* использованием криогенераторов Стирлинга, Вюлемье-Такониса и т.д; рабочими телами данных криогенераторов является, как правило, гелий и водород, что позволяет при совершении замкнутого термодинамического цикла достигать температуры на стенке теплообменника ниже температуры кипения природного газа;

* использованием криогенных жидкостей с температурой кипения ниже, чем у природного газа, например жидкого азота, кислорода и т. д.;

* использованием каскадного цикла с помощью различных холодильных агентов (пропана, аммиака, метана и т. д.); при каскадном цикле газ легко поддающийся сжижению путем компримирования, при испарении создает холод, необходимый для понижения температуры другого трудносжижаемого газа.

После сжижения СПГ помещается в специально изолированные резервуары хранения, а затем загружается в танкеры-газовозы для транспортировки. За это время транспортировки небольшая часть СПГ неизменно «выпаривается» и может использоваться в качестве топлива для двигателей танкера. По достижении терминала потребителя сжиженный газ разгружается и помещается в резервуары хранения.

Прежде чем пустить СПГ в употребление, его вновь приводят в газообразное состояние на станции регазификации. После регазификации природный газ используется так же, как и газ, транспортируемый по газопроводам.

Приемный терминал СПГ - менее сложное сооружение, чем завод сжижения, и состоит главным образом из пункта приема, сливной эстакады, резервуаров хранения, установок обработки газов испарения из резервуаров и узла учета.

Технология сжижения газа, его транспортировки и хранения уже вполне освоена в мире. Поэтому производство СПГ - довольно стремительно развивающаяся отрасль в мировой энергетике.

Маломасштабное производство сжиженного природного газа

Современные технологии позволяют решить проблему автономного энергоснабжения небольших промышленных, социальных предприятий и населенных пунктов путем создания энергетических объектов на базе мини-энергетики с использованием СПГ.

Автономные объекты мини-энергетики с применением сжиженного природного газа не только помогут ликвидировать проблему энергообеспечения отдаленных регионов, но и являются альтернативой для прекращения зависимости потребителей от крупных поставщиков электрической и тепловой энергии. На данный момент маломасштабное производство СПГ является привлекательной сферой для инвестиций в объекты энергетики со сравнительно коротким сроком окупаемости капитальных вложений.

Существует технология сжижения природного газа с использованием энергии перепада давления газа на ГРС с внедрением детандер-компрессорных агрегатов, реализованная на ГРС "Никольская" (Ленинградская область). Расчетная производительность установки по СПГ равна 30 тоннам в сутки.

Установка сжижения природного газа состоит из блока теплообменников вымораживателей, системы охлаждения компримированного газа, блока сжижения, двухступенчатого турбодетандер-компрессорного агрегата, автоматизированной системы контроля и управления работой установки (АСКУ), арматуры, в том числе управляемой, и КИП.

Рисунок 2. Схема установки сжижения ПГ

Принцип работы установки заключается в следующем (рис.2).

Природный газ с расходом 8000 нм3/ч и давлением 3,3 МПа поступает на турбокомпрессоры К1 и К2, работающие на одном валу с турбодетандерами Д1 и Д2.

В установке по сжижению природного газа в связи с достаточно высокой чистотой природного газа (содержание СО2 не более 400 ррm) предусматривается только осушка газа, которую с целью снижения стоимости оборудования предусмотрено проводить способом вымораживания влаги.

В 2-х ступенчатом турбокомпрессоре давление газа повышается до 4,5 МПа, затем сжатый газ последовательно охлаждается в теплообменниках Т3-2 и Т3-1 и поступает в вымораживатель, состоящий из 3-х теплообменников Т11-1, Т11-2 и Т11-3 (или Т12-1, Т12-2 и Т12-3), где за счет использования холода обратного потока газа из теплообменника Т2-1 происходит вымораживание влаги. Очищенный газ после фильтра Ф1-2 разбивается на два потока.

Один поток (большую часть) направляют в вымораживатель для рекуперации холода, а на выходе из вымораживателя через фильтр подают последовательно на турбодетандеры Д1 и Д2, а после них направляют в обратный поток на выходе из сепаратора С2-1.

Второй поток направляют в теплообменник Т2-1, где после охлаждения дросселируют через дроссель ДР в сепаратор С2-1, в котором производят отделение жидкой фазы от его паров. Жидкую фазу (сжиженный природный газ) направляют в накопитель и потребителю, а паровую фазу подают последовательно в теплообменник Т2-1, вымораживатель Т11 или Т12 и теплообменник Т3-2, а после него в магистраль низкого давления, расположенную после газораспределительной станции, где давление становится равным 0,28-0,6 МПа.

Через определенное время работающий вымораживатель Т11 переводят на отогрев и продувку газом низкого давления из магистрали, а на рабочий режим переводят вымораживатель Т12. 28 января 2009 г.,А.П. Иньков, Б.А. Скородумов и др. Neftegaz.RU

В нашей стране имеется значительное количество ГРС, где редуцируемый газ бесполезно теряет свое давление, а в отдельных случаях в зимний период приходится подводить еще энергию для подогрева газа перед его дросселированием.

В то же время, используя практически бесплатную энергию перепада давления газа, можно получить общественно полезный, удобный и экологически безопасный энергоноситель - сжиженный природный газ, с помощью которого можно газифицировать промышленные, социальные объекты и населенные пункты, не имеющие трубопроводного газоснабжения.

Пары и «постоянные газы». Примерно до середины XIX в. вещества в газообразном состоянии разделялись на пары и «постоянные газы». «Постоянными газами» называли такие, например, газы, как кислород, азот, водород, которые не удавалось перевести а жидкое состояние путем повышения давления.

Догадку об отсутствии принципиального различия между парами и «постоянными газами» высказывал еще в конце XVII в. Лавуазье. Он считал, что при достаточно низкой температуре в жидкость превратится и атмосферный воздух. Первым из постоянных газов был сжижен аммиак при повышении давления до . В 1823 г. Майклу Фарадею удалось превратить в жидкость газ хлор путем охлаждения его при повышенном давлении. В 1877 г. французский инженер Кальетеи швейцарский физик Пикте независимо друг от друга добились сжижения кислорода при повышении давления примерно до и охлаждении до температуры ниже -140 °С. В том же году был сжижен азот. В 1898 г. английский физик Дьюар добился сжижения водорода, а в 1908 г. в Голландии Камерлинг-Оннес перевел в жидкое состояние гелий - последний газ, который до него никому не удавалось превратить в жидкость.

Таким образом, было установлено, что из газообразного состояния в жидкое можно перевести любое вещество. Однако каждое вещество может испытывать такое превращение лишь при температурах ниже определенной, так называемой критической температуры Тк. При температуре выше критической вещество не превращается в жидкость или твердое тело ни при каких значениях давления. Очевидно, что при критической температуре средняя кинетическая энергия теплового движения молекул вещества превышает потенциальную энергию их связи в жидкости или твердом теле. Так как силы притяжения, действующие между молекулами различных веществ, различны, неодинакова и потенциальная энергия их связи, отсюда различными оказываются и значения критической температуры для различных веществ.

Сжижение газов. Рассмотрим основные принципы, используемые в машинах для сжижения газов. Первое условие, которое необходимо выполнить для превращения газа в жидкость, - это охлаждение его до температуры ниже критической. При температуре ниже критической любой газ может быть переведен в жидкое состояние путем повышения давления, поэтому сжижение газов, имеющих критическую температуру выше 0 °С, не представляет принципиальной трудности. Более сложной задачей является сжижение газов, критическая температура которых значительно ниже нуля. Такими газами являются кислород, азот, водород, гелий, критические температуры которых равны соответственно -118,4, -146,9, -240 и -268 °С. Такие низкие температуры не встречаются на Земле в естественных условиях, поэтому проблема сжижения этих газов оказывается тесно связанной с проблемой получения низких температур. Основной способ, используемый для охлаждения газа, - его расширение с совершением работы.

Компрессионный холодильник. С простейшей машиной, в которой производится сжижение газа, можно ознакомиться на примере домашнего компрессионного холодильника (цветная вклейка I).

Рабочим телом в холодильнике служит газ фреон. Фреоном заполнена система конденсатора и испарителя. Компрессор, приводимый в действие электродвигателем, откачивает газообразный фреон из испарителя и нагнетает его в конденсатор. При сжатии фреон нагревается. Охлаждение его до комнатной температуры производится в конденсаторе, расположенном обычно на задней стенке холодильного шкафа. Охлажденный до комнатной температуры при повышенном давлении, создаваемом в конденсаторе с помощью компрессора, фреон переходит в жидкое состояние. Из конденсатора жидкий фреон через капиллярную трубку поступает в испаритель. Откачкой паров фреона из испарителя с помощью компрессора в нем поддерживается пониженное давление. При пониженном давлении в испарителе жидкий фреон кипит и испаряется даже при температуре ниже 0 °С. Теплота на испарение фреона отбирается от стенок испарителя, вызывая их охлаждение. Откачанные пары фреона поступают в кожух компрессора, оттуда снова в конденсатор и т. д. по замкнутому циклу.

Самая низкая температура, которая может быть получена в испарителе (морозильной камере), определяется значением давления паров фреона, так как температура кипения фреона, как и любой другой жидкости, понижается с понижением давления. При постоянной скорости поступления жидкого фреона в испаритель через капиллярную трубку из конденсатора давление паров фреона в испарителе будет тем ниже, чем дольше работает компрессор. Если нет нужды добиваться понижения температуры в испарителе до предельно достижимого значения, то работа компрессора периодически останавливается путем выключения электромотора, приводящего его в действие. Компрессор выключается автоматом, следящим за поддержанием в холодильном шкафу заданной температуры.