Вопросы викторины. Как ведут себя в невесомости песочные часы? Песочные часы́

Вопросы викторины. Как ведут себя в невесомости песочные часы? Песочные часы́ - страница №1/1

13f1223 «Аксиумники»


Вопросы викторины.

1.Как ведут себя в невесомости песочные часы?

Песочные часы́ - простейший прибор, для отсчёта промежутков времени состоящий из двух сосудов, соединённых узкой горловиной, один из которых частично заполнен песком. Время, за которое песок через горловину пересыпается в другой сосуд, может составлять от нескольких секунд, до нескольких часов.

Песочные часы были известны в глубокой древности. В Европе они получили распространение в Средние века. Одним из первых упоминаний о таких часах является обнаруженное в Париже сообщение, в котором содержится указание по приготовлению тонкого песка из порошка чёрного мрамора, прокипячённого в вине и высушенного на солнце. На кораблях применялись четырёхчасовые песочные часы (время одной вахты) и 30-секундные для определения скорости корабля по лагу.

В настоящее время песочные часы используются лишь при проведении некоторых врачебных процедур, в фотографии, а также в качестве сувениров.

Точность песочных часов зависит от качества песка. Колбы заполнялись отожжённым и просеянным через мелкое сито и тщательно высушенным мелкозернистым песком. В качестве исходного материала также использовались молотая цинковая и свинцовая пыль.


Точность хода зависит также от формы колб, качества их поверхности, равномерной зернистости и сыпучести песка. При длительном использовании точность песочных часов ухудшается из-за повреждения песком внутренней поверхности колбы, увеличения диаметра отверстия в диафрагме между колбами и дробления песчаных зёрен на более мелкие.

В невесомости песочные часы, также как и часы с маятником, работать не будут. Почему? Потому, что они заисят от силы тяжести, маятник не будет качаться, песчинки не буду падать, так как в космосе нет силы тяжести.

2. Как измерить массу тела в космосе?

Итак мы знаем, что Масса это фундаментальная физическая величина, определяющая инерционные и гравитационные физические свойства тела. С точки зрения теории относительности масса тела m характеризует его энергию покоя , которая согласно соотношению Эйнштейна: , где -- скорость света.

В ньютоновской теории гравитации масса служит источником силы всемирного тяготения, притягивающей все тела друг к другу. Сила , с которой тело массы притягивает тело с массой , определяется законом тяготения Ньютона:

или если быть более точным. , где -- вектор

Инерционные свойства массы в нерелятивистской (ньютоновской) механике определяются соотношением . Из сказанного выше, можно получить по крайней мере три способа определения массы тела в невесомости.


Да, если вам доведется побывать в невесомости, то помните, что отсутствие веса, это не значит отсутствие массы и в случае удара о борт вашего космического корабля синяки и шишки будут самыми настоящими:).


В космосе не то что сложно, а практически невозможно пользоваться обычным молотком. Это происходит, потому что у нас на земле и в космосе разные гравитационные условия. Например: в космосе вакуум, в космосе нет веса, то есть все одинаковы, неважно или ты пуговица или космическая станция.

В космосе нет понятия верха и низа т.к. нет ориентира, относительно которого можно было бы сказать, что там, где он верх а напротив низ, естественно можно за этот ориентир взять планету, например солнце, но официально такое не принято, считают что нет верха и низа.

Конструкция молотка на земле сделана по принципу получения большей кинетической энергии, то есть, чем больше скорость замаха и масса самого молотка, тем сильнее удар.

На земле мы работаем молотком используя точку опоры это - пол, пол держится на земле, а земля это - низ, всё притягивается вниз. В космосе нет точки опоры, нет низа, и все имеют нулевой вес, когда космонавт ударит молотком, это будет выглядеть как столкновение двух тел, у которых есть кинетическая энергия, космонавта просто начнёт крутить из стороны в сторону, а то почему он ударил, отлетит в сторону, потому что они сами по себе они ни к чему «не привязаны». По этому нужно работать молотком относительно чего-то, например можно закрепить молоток на корпусе того, почему надо ударить, так что бы молоток был не сам по себе, а имел точку опоры.


Для работ в космосе советские специалисты изобрели специальный молоток. Более того - этот молоток поступил в продажу в 1977 году. Вы его сможете узнать по удобной рукоятке. Для того чтобы окончательно убедиться, что молоток "космический", нужно ударить по поверхности. В отличие от обычных молотков он не отскакивает после удара. Его ударная часть полая, а в полость насыпаны металлические шарики. В момент удара нижние шарики устремляются вверх, а верхние продолжают двигаться вниз. Трение между ними рассеивает энергию отдачи. Можно воспользоваться принципом пресса, который прекрасно работает в невесомости, потому что там используется усилие, пресс работает относительно станины, на которую закреплены цилиндры. Саму станину надо закрепить на корпусе того предмета, по которому надо ударить. Вот что получается: «Молоток», который действует как пресс, закреплён на корпусе космического корабля. Если использовать такой молоток можно забить или точнее задавить любой гвоздь или заклёпку.

  1. Чем отличается процесс замерзания воды на Земле и на космической орбите?
Посмотрите на фазовую диаграмму воды. Температура кипения жидкостей зависит от внешнего давления. При комнатной температуре вода кипит, если давление снизить примерно до 0.07 атм. То есть, если температура воды комнатная, то при 0.07 атм вода начинает кипеть. При этом в парообразное состояние переходят молекулы воды с самой высокой энергией. За счёт этого температура воды понижается. Если давление поддерживать постоянным, то в конце концов вода охладится до температуры, когда она перестанет кипеть.

Однако если давление ниже 610 Па (давление тройной точки воды), то вода не может находиться в жидком состоянии – либо лёд, либо пар. Поэтому при очень низких давлениях большая часть воды испаряется, а оставшееся превращается в лёд. Например (см. фазовую диаграмму) при давлении 100 Па граница раздела между льдом и паром проходит примерно при 250K. Тут надо смотреть закон распределения молекул по скоростям. Предположим от фонаря, что 5% самых медленных молекул воды имеют среднюю температуру 250K. Значит при давлении 100 Па испарится 95% воды, а 5% превратится в лёд, причём температура этого льда будет 250 К.

Эти рассуждения, конечно, не учитывают всяких тонкостей типа скрытой энергии фазовых переходов, перераспределение молекул по скоростям при охлаждении, однако думаю, что качественно они правильно описывают процесс.

В космосе давление существенно ниже, однако не равно нулю. А кривая раздела льда и пара на фазовой диаграмме при снижении давления идёт в точку (T = 0; P = 0). То есть при любом сколь угодно малом (но ненулевом) давлении температура сублимации льда ненулевая. Это значит, что подавляющая часть воды испарится, но какая-то микроскопическая её часть превратится в лёд.

Тут есть ещё один нюанс. Космос пронизан излучением с температурой примерно 3 K. Это значит что охладиться ниже 3 K вода (лёд) не сможет. Поэтому итог процесса зависит от давления сублимации льда при температуре 3 K. Поскольку граница сублимации стремится к нулю по очень крутой экспоненте

P = A exp(-k/T), причём A порядка 10^11 Па, а k примерно 5200,

то давление сублимации при 3 К экспоненциально мало, поэтому вода должна испариться вся (или лёд сублимировать весь, если хотите).

Наше Солнце имеет массу 1.99 × 10 27 тонн - в 330 тысяч раз тяжелее Земли. Но это далеко не предел. Самая тяжелая среди обнаруженных звезд, R136a1, весит как 256 Солнц. А , ближайшая к нам звезда, едва перевалила за десятую часть кряжести нашего светила. Масса звезды может быть удивительно разной - но есть ли ей границы? И почему она так важна астрономам?

Масса - одна из самых важных и необычных характеристик звезды. По ней астрономы могут точно сказать о возрасте звезды и дальнейшей ее судьбе. Более того, массивность определяет силу гравитационного сжатия светила - главного условия для того, чтобы ядро звезды «загорелось» в термоядерной реакции и начало . Поэтому масса является проходным критерием в категорию звезд. Слишком легкие объекты, вроде , не смогут толком светить - а слишком тяжелые переходят в категорию экстремальных объектов по типу .

И в то же время ученые едва могут вычислить массу звезды - единственным светилом, чья масса известна точно, является наше . Такую ясность помогла внести наша Земля. Зная массу планеты и скорость ее , можно вычислить и массу самой звезды на основании Третьего закона Кеплера, доработанного известным физиком Исааком Ньютоном. Иоганн Кеплер выявил связь между расстоянием от планеты до звезды и скоростью полного оборота планеты вокруг светила, а Ньютон дополнил его формулу массами звезды и планеты. Модифицированная версия Третьего закона Кеплера часто используется астрономами - причем не только для определения массы звезд, но и других космических объектов, составляющих вместе .

Про отдаленные светила пока приходится только догадываться. Самым совершенным (с точки зрения точности) является метод определения массы звездных систем. Его погрешность составляет «всего» 20–60%. Такая неточность критическая для астрономии - будь Солнце на 40% легче или тяжелее, жизнь на Земле не возникла бы.

В случае измерения массы одиночных звезд, возле которых нет видимых объектов, чью орбиту можно использовать для вычислений, астрономы идут на компромисс. Сегодня читается, что масса звезд одного одинакова. Также ученым помогает связь массы со светимостью или звезды, поскольку обе эти характеристики зависимы от силы ядерных реакций и размеров звезды - непосредственных индикаторов массы.

Значение массы звезды

Секрет массивности звезд кроется не в качестве, а в количестве. Наше Солнце, как и большинство звезд , на 98% состоит из двух самых легких элементов в природе - водорода и гелия. Но при этом в нем собрано 98% массы всей !

Как такие легкие вещества могут собраться вместе в громадные горящие шары? Для этого нужно свободное от крупных космических тел пространство, много материала и начальный толчок - чтобы первые килограммы гелия и водорода начали притягиваться друг к другу. В и молекулярных облаках, где рождаются звезды, водороду и гелию ничто не мешает скапливаться. Их собирается так много, что гравитация начинает насильно сталкивать ядра атомов водорода. Это начинает термоядерную реакцию, в ходе которой водород превращается в гелий.

Логично, что чем больше масса звезды, тем больше ее светимость. Ведь в массивной звезде водородного «топлива» для термоядерной реакции куда больше, а гравитационное сжатие, активирующее процесс - сильнее. Доказательством служит самая массивная звезда, R136a1, упомянутая в начале статьи - будучи больше по весу в 256 раз, она светит в 8,7 миллионов раз ярче нашей звезды!

Но у массивности есть и обратная сторона: из-за интенсивности процессов водород быстрее «сгорает» в термоядерных реакциях внутри . Поэтому массивные звезды живут совсем недолго в космических масштабах - несколько сотен, а то и десятков миллионов лет.

  • Интересный факт: когда масса звезды превышает массу Солнца в 30 раз, прожить она сможет не больше 3 миллионов лет - вне зависимости от того, насколько ее масса больше 30-кратной солнечной. Это связано с превышением предела излучения Эддингтона. Энергия запредельной звезды становится настолько мощной, что вырывает вещество светила потоками - и чем массивнее звезда, тем сильнее становится потеря массы.

Выше мы рассмотрели основные физические процессы, связанные с массой звезды. А теперь попробуем разобраться, какие звезды можно «сделать» с их помощью.

Понятие Масса вызывает массу вопросов: Зависит ли масса тел от их скорости? Аддитивна ли масса при объединении тел в систему (т.е. м12=м1+м2)? Как измерить массу тела в космосе?

Различные преподаватели физики отвечают на эти вопросы по-разному, поэтому, не удивительно что первое заповедью молодого специалиста приходящего на работу в НИИ становится - "забудьте всё чему учили в школе". На этой странице я познакомлю Вас с точкой зрения специалистов, соприкасающихся с этими вопросами в своей научной работе. Но давайте вначале подробнее остановимся на физическом смысле понятия масса.

Я уже рассказывал о математико-геометрическом толковании массы как искривления геодезических линий четырёхмерного пространства/времени, но в своей работе 1905-го года Эйнштейн придал массе и физический смысл, ввёдя в физику понятие энергии покоя.

Сегодня, когда говорят о массе - физики имеют ввиду коэффициент определяемый по формуле:

m2=E2/c4-p2/c2 (1)

Во всех формулах, используются следующие обозначения (если иное не оговорено):

Такая масса не меняется при переходе от одной инерциальной системы отсчета к другой инерциальной системе. В этом легко убедиться, если использовать для Е и р преобразования Лоренца, где v - скорость одной системы относительно другой, и вектор v направлен по оси х:

(2)

Таким образом, в отличие от Е и р, которые являются компонентами 4-мерного вектора, масса является лоренцевым инвариантом.

Информация к размышлению:

Преобразование Лоренца подпирает собой весь мир эйнштейновских формул. Восходит оно к теории, предложенной физиком Хендриком Антоном Лоренцом. Суть, вкратце, сводится к следующему: продольные - в направлении движения - размеры быстро движущегося тела сокращаются. Еще в 1909 году известный австрийский физик Пауль Эренфест усомнился в этом выводе. Вот его возражение: допустим, движущиеся предметы, действительно, сплющиваются. Хорошо, проведем опыт с диском. Будем вращать его, постепенно увеличивая скорость. Размеры диска, как говорит г-н Эйнштейн, будут уменьшаться; кроме того, диск искривится. Когда же скорость вращения достигнет скорости света, диск попросту исчезнет.

Эйнштейн оказался в шоке, потому что Эренфест был прав. Творец теории относительности опубликовал на страницах одного из специальных журналов пару своих контраргументов, а затем помог оппоненту получить должность профессора физики в Нидерландах, к чему тот давно уже стремился. Эренфест перебрался туда в 1912 году. В свою очередь, со страниц книг о частной теории относительности исчезает упомянутое нами открытие Эренфеста: так называемый парадокс Эренфеста.

Лишь в 1973 году умозрительный эксперимент Эренфеста был воплощен на практике. Физик Томас Э. Фипс фотографировал диск, вращавшийся с огромной скоростью. Эти снимки (сделанные при использовании вспышки) должны были послужить доказательством формул Эйнштейна. Однако с этим вышла промашка. Размеры диска - вопреки теории - не изменились. «Продольное сжатие», возвещенное частной теорией относительности, оказалось предельной фикцией. Фипс направил отчет о своей работе в редакцию популярного журнала «Nature». Та ее отклонила. В конце концов, статья была помещена на страницах некоего специального журнала, выходившего небольшим тиражом в Италии. Однако никто так и не перепечатал ее. Сенсации не произошло. Статья оказалась незамеченной.

Не менее примечательна и судьба экспериментов, в которых пытались зафиксировать замедление времени при движении.

Кстати, из соотношения (1) как раз и получается знаменитое Эйнштейновское выражение для энергии покоя E0=mc2 , (если p=0). . А если принять за единицу скорости скорость света, т.е. положить с = 1, то масса тела равна его энергии покоя. А поскольку энергия сохраняется, то и масса является сохраняющейся величиной, не зависящей от скорости. Вот и ответ на

первый вопрос И именно энергия покоя, "дремлющая" в массивных телах, частично освобождается в химических и особенно ядерных реакциях.

Теперь, давайте рассмотрим вопрос об аддитивности:

Для перехода к другой инерциальной системе отсчёта следует применить преобразования Лоренца к покоящемуся, в первоначальной системе, телу. При этом сразу же получается связь энергии и импульса тела с его скоростью:

(3)

Замечание: Частицы света фотоны - безмассовые. Поэтому из вышеизложенных уравнений следует, что для фотона v = с.

Энергия и импульс аддитивны. Суммарная энергия двух свободных тел равна сумме их энергий (Е = E1 + E2), с импульсом аналогично. Но если подставить эти суммы в формулу (1) мы увидим, что

Суммарная масса оказывается зависящей от угла между импульсами p1 и р2.

Из этого следует, что масса системы двух фотонов, с энергиями Е, равна 2Е/с2, если они летят в противоположные стороны, и нулевая, если они летят в одну сторону. Что очень непривычно для человека, впервые сталкивающегося с теорией относительности, но таков факт! Механика Ньютона, где масса аддитивна, не работает при скоростях, сравнимых со скоростью света. Свойство аддитивности массы следует из формул лишь в пределе, когда v <

Итак, для реализации принципа относительности и постоянства скорости света необходимы преобразования Лоренца, а из них следует, что связь между импульсом и скоростью дается формулой (3), а не формулой Ньютона p = mv.

Сто лет тому назад формулу Ньютона попытались по инерции мышления перенести в релятивистскую физику, и так возникло представление о релятивистской массе, которая растет с увеличением энергии и, следовательно, с возрастанием скорости. Формула m=E/c2 , согласно сегодняшней точке зрения, является артефактом, создавая сумбур в головах: с одной стороны, фотон безмассов, а с другой - у него есть масса.

Почему обозначение Е0 разумно? Потому что энергия зависит от системы отсчета, и индекс нуль в этом случае указывает, что это энергия в системе покоя. Почему обозначение m0 (масса покоя) неразумно? Потому что масса не зависит от системы отсчета.

Вносит свою лепту в возникающую путаницу и утверждение об эквивалентности энергии и массы. Действительно, всегда, когда есть масса, есть и отвечающая ей энергия: энергия покоя E0=mc2. Однако не всегда, когда есть энергия, есть масса. Масса фотона равна нулю, а энергия его отлична от нуля. Энергии частиц в космических лучах или на современных ускорителях на много порядков превышают их массы (в единицах, где с = 1).

Выдающуюся роль в формировании современного релятивистского языка сыграл Р. Фейнман, который в 1950-е годы создал релятивистски инвариантную теорию возмущений в квантовой теории поля вообще и в квантовой электродинамике в частности. Сохранение 4-вектора энергии - импульса лежит в основе знаменитой техники фейнмановских диаграмм, или, как их еще иначе называют, фейнмановских графиков. Во всех своих научных работах Фейнман использовал понятие массы, даваемое формулой (1). Физикам, которые знакомство с теорией относительности начали с Теории поля Ландау и Лифшица, или научных статей Фейнмана, уже не могла прийти в голову мысль называть массой тела энергию, деленную на с2 , однако в популярном изложении (включая знаменитые Фейнмановские лекции по физике) этот артефакт остался. И это очень прискорбный факт, частичное объяснение которого, как мне кажется, надо искать в том, что даже величайшие физики, переходя от научной деятельности к просветительской, пытаются приспособиться к сознанию широкого круга читателей, воспитанного на m=E/c2

Именно для того, чтобы избавиться от подобных "ляпов", необходимо, чтобы в учебной литературе по теории относительности была принята единая современная научная терминология. Параллельное использование современных и давно устаревших обозначений и терминов напоминает о марсианском зонде, который разбился в 1999 г. из-за того, что одна из фирм, участвовавших в его создании, использовала дюймы, в то время как остальные - метрическую систему

Сегодня физика вплотную подошла к вопросу о природе массы как истинно элементарных частиц, таких как лептоны и кварки, так и частиц типа протона и нейтрона, называемых адронами. Этот вопрос тесно связан с поисками так называемых хиггсовых бозонов и со структурой и эволюцией вакуума. И здесь слова о природе массы относятся, разумеется, к инвариантной массе т, определенной в формуле (1), а не к релятивистской массе, которая просто представляет собой полную энергию свободной частицы

В теории относительности масса не является мерой инерции. (формула F-ma). Мерой инерции является полная энергия тела или системы тел. Никаких ярлыков, тем более соответствующих ньютоновскому представлению о массе, физики к частицам не прикрепляют. Ведь частицами физики считают и безмассовые частицы. Учитывая только что сказанное, нет ничего удивительного в том, что излучение переносит от одного тела к другому энергию, а следовательно, и инерцию

И краткое резюме:

Масса имеет одну и ту же величину во всех системах отсчета, она инвариантна независимо от того, как движется частица

Вопрос "Имеет ли энергия массу покоя?" не имеет смысла. Массу имеет не энергия, а тело (частица) или система частиц. Авторы учебников, заключающие, из E0=mc2 , что "энергия имеет массу", пишут просто бессмысленную фразу. Отождествить массу и энергию можно, только нарушив логику, поскольку масса - релятивистский скаляр, а энергия - компонента 4-вектора. В разумной терминологии, может звучать только: "Эквивалентность энергии покоя и массы".

Как измерить массу тела в космосе?

Итак мы знаем, что Масса это фундаментальная физическая величина, определяющая инерционные и гравитационные физические свойства тела. С точки зрения теории относительности масса тела m характеризует его энергию покоя , которая согласно соотношению Эйнштейна: , где -- скорость света.

В ньютоновской теории гравитации масса служит источником силы всемирного тяготения, притягивающей все тела друг к другу. Сила , с которой тело массы притягивает тело с массой , определяется законом тяготения Ньютона:

или если быть более точным. , где -- вектор

Инерционные свойства массы в нерелятивистской (ньютоновской) механике определяются соотношением . Из сказанного выше, можно получить по крайней мере три способа определения массы тела в невесомости.

Можно аннигилировать (перевести всю массу в энергию) исследуемое тело и измерить выделившуюся энергию -- по соотношению Эйнштейна получить ответ. (Годится для очень малых тел -- например, так можно узнать массу электрона). Но такого решения не должен предлагать даже плохой теоретик. При аннигиляции одного килограмма массы выделяется 2·1017 джоулей тепла в виде жесткого гамма излучения

С помощью пробного тела измерить силу притяжения, действующую на него со стороны исследуемого объекта и, зная расстояние по соотношению Ньютона, найти массу (аналог опыта Кавендиша). Это сложный эксперимент, требующий тонкой методики и чувствительного оборудования, но в таком измерении (активной) гравитационной массы порядка килограмма и более с вполне приличной точностью сегодня ничего невозможного нет. Просто это серьезный и тонкий опыт, подготовить который вы должны еще до старта вашего корабля. В земных лабораториях закон Ньютона проверен с прекрасной точностью для относительно небольших масс в интервале расстояний от одного сантиметра примерно до 10 метров.

Подействовать на тело с какой -- либо известной силой (например прицепить к телу динамометр) и измерить его ускорение, а по соотношению найти массу тела (Годится для тел промежуточного размера).

Можно воспользоваться законом сохранения импульса. Для этого надо иметь одно тело известной массы, и измерять скорости тел до и после взаимодействия.

Лучший способ взвешивания тела - измерение/сравнение его инертной массы. И именно такой способ очень часто используется в физических измерениях (и не только в невесомости). Как вы, вероятно, помните из личного опыта и из курса физики, грузик, прикрепленный к пружинке, колеблется с вполне определенной частотой: w = (k/m)1/2, где k - жесткость пружинки, m - масса грузика. Таким образом, измеряя частоту колебаний грузика на пружинке, можно с нужной точностью определить его массу. Причем совершенно безразлично, есть невесомость, или ее нет. В невесомости удобно держатель для измеряемой массы закрепить между двумя пружинами, натянутыми в противоположном направлении. (Можете для развлечения определить, как зависит чувствительность весов от предварительного натяжения пружинок).

В реальной жизни такие весы используются для определения влажности и концентрации некоторых газов. В качестве пружинки используется пьезоэлектрический кристалл, частота собственных колебаний которого определяется его жесткостью и массой. На кристалл наносится покрытие, селективно поглощающее влагу (или определенные молекулы газа или жидкости). Концентрация молекул, захваченных покрытием, находится в определенном равновесии с концентрацией их в газе. Молекулы, захваченные покрытием, слегка меняют массу кристалла и, соответственно, частоту его собственных колебаний, которая определяется электронной схемой (помните, я сказал, что кристалл пьезоэлектрический)... Такие "весы" очень чувствительны и позволяют определять очень малые концентрации водяного пара или некоторых других газов в воздухе.

Да, если вам доведется побывать в невесомости, то помните, что отсутствие веса, это не значит отсутствие массы и в случае удара о борт вашего космического корабля синяки и шишки будут самыми настоящими

Наследники (ст. 1117). На требования о признании завещания недействительным распространяется общий трехлетний срок исковой давности (ст. 196 ГК). Глава III Проблемы правового регулирования института наследования по завещанию и перспективы развития. §1 Некоторые новеллы и проблемы правового регулирования института наследования по завещанию. Увеличилось...



Закономерностям, независимо от наших знаний о природе явлений. Всякое следствие имеет свою причину. Как и все остальное в физике, понятие детерминизма менялось по мере развития физики и всего естествознания. В 19-м веке теория Ньютона окончательно оформилась и установилась. Существенный вклад в ее становление внес П.С.Лаплас (1749 - 1827). Он был автором классических трудов по небесной механике и...

Которая сейчас работает на Международной космической станции, прочитал:
"...продолжили предварительный сбор грузов для нашего «Союза», в том числе нашей личной квоты в 1,5 кг, и упаковали другие свои личные вещи для возвращения на Землю" .

Задумался. Ок, с орбиты астронавты могут взять с собой 1,5 кг вещей. Но как они определят их массу в условиях невесомости (микрогравитации)?

Вариант 1 - бухгалтерский. Все вещи на космическом корабле должны быть взвешены заранее. Должно быть досконально известно, сколько весит колпачок от ручки, носок и флешка.

Вариант 2 - центробежный. На тарированной пружине раскручиваем предмет; из угловой скорости, радиуса вращения и деформации пружины высчитываем его массу.

Вариант 3 - второй ньютоновский (F=ma). Пружиной толкаем тело, замеряем его ускорение. Зная силу толчка пружины, получаем массу.


Оказалось четвертое.
Используется зависимость периода колебаний пружины от массы закрепленного на ней тела.
Измеритель массы тела и малых масс в невесомости «ИМ-01М» (массметр):

"ИМ" использовался на станциях "Салют" и "Мир" . Собственная масса массметра составляла 11 кг, взвешивание занимало полминуты, в течение которых прибор с высокой точностью измерял период колебаний платформы с грузом.

Вот как описывает процедуру Валентин Лебедев в своем "Дневнике космонавта" (1982):
"Первый раз приходится взвешиваться в космосе. Понятно, что обычные весы здесь работать не могут, так как нет веса. Наши весы в отличие от земных необычные, они работают на другом принципе и представляют собой колеблющуюся платформу на пружинах.
Перед взвешиванием опускаю платформу, сжимая пружины, до фиксаторов, ложусь на нее, плотно прижимаясь к поверхности, и фиксируюсь, группирую тело, чтобы не болталось, обхватывая профильный ложемент платформы ногами и руками. Нажимаю спуск. Легкий толчок, и ощущаю колебания. Частота их высвечивается на индикаторе в цифровом коде. Считываю его значение, вычитаю код частоты колебания платформы, замеренных без человека, и по таблице определяю свой вес".

Орбитальная пилотируемая станция "Алмаз" , массметр под цифрой 5:

Модернизированный вариант этого устройства и находится сейчас на Международной космической станции:

Справедливости ради - вариант 1 (предварительное взвешивание всего) используется и сейчас для общего контроля, а вариант 3 (второй закон Ньютона) применяется в устройстве взвешивания Space Linear Acceleration Mass Measurement Device (

Которая сейчас работает на Международной космической станции, прочитал:

… продолжили предварительный сбор грузов для нашего «Союза», в том числе нашей личной квоты в 1,5 кг, и упаковали другие свои личные вещи для возвращения на Землю.

Задумался. ОК, с орбиты астронавты могут взять с собой 1,5 кг вещей. Но как они определят их массу в условиях невесомости (микрогравитации)?

Вариант 1 - бухгалтерский. Все вещи на космическом корабле надо взвесить заранее. Должно быть досконально известно, сколько весит колпачок от ручки, носок и флешка.

Вариант 2 - центробежный. На тарированной пружине раскручиваем предмет; из угловой скорости, радиуса вращения и деформации пружины высчитываем его массу.

Вариант 3 - второй ньютоновский (F=ma). Пружиной толкаем тело, замеряем его ускорение. Зная силу толчка пружины, получаем массу.

Оказалось четвертое.

Используется зависимость периода колебаний пружины от массы закрепленного на ней тела.
Измеритель массы тела и малых масс в невесомости «ИМ-01М» (массметр):

«ИМ» использовался на станциях «Салют» и «Мир» . Собственная масса массметра составляла 11 кг, взвешивание занимало полминуты, в течение которых прибор с высокой точностью измерял период колебаний платформы с грузом.

Вот как описывает процедуру Валентин Лебедев в своем «Дневнике космонавта» (1982):

Первый раз приходится взвешиваться в космосе. Понятно, что обычные весы здесь работать не могут, так как нет веса. Наши весы в отличие от земных необычные, они работают на другом принципе и представляют собой колеблющуюся платформу на пружинах.
Перед взвешиванием опускаю платформу, сжимая пружины, до фиксаторов, ложусь на нее, плотно прижимаясь к поверхности, и фиксируюсь, группирую тело, чтобы не болталось, обхватывая профильный ложемент платформы ногами и руками. Нажимаю спуск. Легкий толчок, и ощущаю колебания. Частота их высвечивается на индикаторе в цифровом коде. Считываю его значение, вычитаю код частоты колебания платформы, замеренных без человека, и по таблице определяю свой вес.

Орбитальная пилотируемая станция «Алмаз» , массметр под цифрой 5:

Модернизированный вариант этого устройства и находится сейчас на Международной космической станции:

Видео:

Справедливости ради - вариант 1 (предварительное взвешивание всего) используется и сейчас для общего контроля, а вариант 3 (второй закон Ньютона) применяется в устройстве взвешивания Space Linear Acceleration Mass Measurement Device (