Нанороботы уже внедряются в тело человека? Медицинские нанороботы.

Современная наука и инженерия нуждаются в помощи роботизированной техники для решения различных задач. При этом проблемы, все чаще встающие перед учеными, требуют создания не гигантов, способных вырыть котлован одним движением ковша, а крошечных, невидимых глазу машин. Эти продукты инженерии не похожи на роботов в привычном понимании, однако способны самостоятельно выполнять сложные задачи по имеющимся алгоритмам. Такие машины называют нанороботами.

Сфера применения нанороботов очень широка. По сути, они могут быть необходимы при создании, отладке и поддержании функционирования любой сложной системы. Наномашины могут применяться в электронике для создания миниустройств или электрических цепей - данная технология называется молекулярной наносборкой. В перспективе любая сборка на заводе из компонентов может быть заменена простой сборкой из атомов.

Однако на первое место сейчас вышел вопрос применения нанороботов в медицине. Тело человека как бы наталкивает на мысль о нанороботах, поскольку само содержит множество естественных наномеханизмов: множество нейтрофилов, лимфоцитов и белых клеток крови постоянно функционируют в организме, восстанавливая поврежденные ткани, уничтожая вторгшиеся микроорганизмы и удаляя посторонние частицы из различных органов. Путем обычной инъекции нанороботы могут быть впрыснуты в кровь или лимфу. Для наружного применения раствор с этими роботами может быть нанесен на участок ткани. Одним из разработанных направлений является транспортировка лекарства к пораженным клетками. Такие нанороботы могут быть эффективными, например, при медикаментозном лечении раковых опухолей.

Нанороботы могут делать буквально все: диагностировать состояния любых органов и процессов, вмешиваться в эти процессы, доставлять лекарства, соединять и разрушать ткани, синтезировать новые. Фактически, нанороботы могут постоянно омолаживать человека, реплицируя все его ткани. На данном этапе учеными разработана сложная программа, моделирующая проектирование и поведение нанороботов в организме. Чрезвычайно детально разработаны аспекты маневрирования в артериальной среде, поиска белков с помощью датчиков. Ученые провели виртуальные исследования нанороботов для лечения диабета, исследования брюшной полости, аневризмы мозга, рака, биозащиты от отравляющих веществ.

Здесь ожидается наибольшее влияние нанотехнологии, поскольку она затрагивает саму основу существования общества - человека. Нанотехнология выходит на такой размерный уровень физического мира, на котором различие между живым и неживым становится зыбким - это молекулярные машины. Нанотехнология в своём развитом виде предполагает строительство нанороботов, молекулярных машин неорганического атомного состава, эти машины смогут строить свои копии, обладая информацией о таком построении. Поэтому грань между живым и неживым начинает стираться. На сегодняшний день создан лишь один примитивный шагающий ДНК-робот.

В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью нанороботов. Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Манипулируя отдельными атомами и молекулами, нанороботы смогут осуществлять ремонт клеток. Прогнозируемый срок создания роботов-врачей - первая половина XXI века.

Для достижения этих целей человечеству необходимо решить три основных вопроса:

  • 1. Разработать и создать молекулярных роботов, которые смогут ремонтировать молекулы.
  • 2. Разработать и создать нанокомпьютеры, которые будут управлять наномашинами.
  • 3. Создать полное описание всех молекул в теле человека, иначе говоря, создать карту человеческого организма на атомном уровне.

Основная сложность с нанотехнологией - это проблема создания первого наноборобота. Существует несколько многообещающих направлений.

Одно из них заключается в улучшении сканирующего туннельного микроскопа или атомносилового микроскопа и достижении позиционной точности и силы захвата.

Другой путь к созданию первого наноробота ведет через химический синтез. Возможно спроектировать и синтезировать хитроумные химические компоненты, которые будут способны к самосборке в растворе.

И еще один путь ведет через биохимию. Рибосомы (внутри клетки) являются специализированными нанороботами, и мы можем использовать их для создания более универсальных роботов. Эти нанороботы смогут тормозить процессы старения, лечить отдельные клетки и взаимодействовать с отдельными нейронами.

Работы по изучению были начаты сравнительно недавно, но темпы открытий в этой области чрезвычайно высоки. Многие полагают, что это будущее медицины.

В Японии ученые разработали «наномозг» - молекулярную структуру, позволяющую управлять нанороботами. В рамках эксперимента с помощью «наномозга» различные наномашины смогли выполнять простейшие команды. «Наномозг» может быть использован при создании суперкомпьютеров.

Сотрудники Международного центра молодых учёных создали сложную молекулярную структуру, которая позволила управлять сразу несколькими наномашинами. Исследователи поставили эксперимент, в рамках которого доказали, что структура из 17 молекул DRQ (состоит из бензоквинона и тетраметила) функционирует аналогично процессору, выполняющему 16 команд за один такт.

17 молекул DRQ могут быть сформированы в молекулярную машину, которая способна закодировать более 4 млрд различных комбинаций. Размер полученной молекулярной структуры - всего 2 нанометра. Это первый в мире работающий образец «наномозга».

Предполагается, что «наномозг» можно будет использовать при создании нанороботов, проекты которых пока находятся в стадии разработки.

Как вы можете себе представить, задачи, стоящие перед инженерами, колоссальны. Жизнеспособный наноробот должен быть небольшим и достаточно гибким, чтобы перемещаться по человеческой системе кровообращения, невероятно сложной сети артерий и вен.

Робот также должен обладать возможностью переносить медикаменты или миниатюрные инструменты. Если предположить, что наноробот не должен оставаться в теле пациента навсегда, он также должен уметь выходить из него.

В этой статье мы узнаем о потенциальном применении нанороботов, различных способов навигации нанороботов по нашему телу, об инструментах, которые они будут использовать для лечения пациентов, и о прогрессе, который двигают команды по всему миру.

«Вот два бота, принимать на ночь вместе с едой!»

При должном исполнении нанороботы смогут лечить множество заболеваний и состояний человека. В то время как их размер означает, что они могут перенести лишь самую малую порцию медикаментов или оборудования, многие доктора и инженеры полагают, что точное применение этих инструментов будет более эффективным, нежели традиционных. К примеру, вводят мощный антибиотик пациенту через шприц, чтобы помочь его иммунной системе: антибиотик разбавляется кровотоком пациента, и в итоге только часть его достигает пункта назначения.

Тем не менее наноботы или целая команда наноботов может добраться прямо до очага инфекции и доставить небольшую дозу лекарств. Пациент будет меньше страдать от побочных эффектов лекарств.

Как нанороботы будут перемещаться по кровеносной системе?

Навигация нанороботов

Есть три основных момента, на которых должны сосредоточиться ученые, изучающие движение нанороботов по телу — навигация, питание и как нанороботы будут двигаться по кровеносным сосудам. Нанотехнологи рассматривают различные варианты для каждого из этих аспектов, и у всякого есть положительные и отрицательные стороны. Большинство вариантов можно разделить на две категории:

  • внешние системы и
  • бортовые системы.

Внешние навигационные системы могут использовать множество различных методов, чтобы доставить наноробота в нужное место. Один из таких методов — использование ультразвуковых сигналов для обнаружения местоположения наноробота и направления его в нужное место назначения. Врачам пришлось бы отправлять ультразвуковые сигналы в тело пациента. Сигналы проходили бы через тело и отражались обратно к источнику сигналов. Нанороботы могут излучать импульсы ультразвуковых сигналов, которые врачи могли бы регистрировать, используя специальное оборудование с ультразвуковыми датчиками.

Используя магнитно-резонансную томографию (МРТ), врачи могли бы определять местонахождение наноробота и отслеживать его, обнаруживая его магнитное поле. Врачи и инженеры из Политехнической школы Монреаля несколько лет назад показали, что могли бы обнаружить, отследить, управлять и даже передвигать наноробота с использованием МРТ. Они проверили свои выводы, маневрируя небольшим количеством малых магнитных частиц в артериях свиньи, используя специальное программное обеспечение на устройстве МРТ. Поскольку за рубежом во многих больницах есть МРТ, это может стать промышленным стандартом — больницам не придется инвестировать в дорогостоящие непроверенные технологии.

Врачи также могут отслеживать нанороботов путем введения радиоактивного красителя в кровоток пациента. Затем использовали бы флюороскоп или аналогичное устройство для обнаружения радиоактивного красителя по мере его движения в кровотоке. Сложные трехмерные изображения показали бы, где находятся нанороботы. В качестве альтернативы нанороботы сами могут распылять радиоактивную краску, оставляя след.

Другие методы обнаружения нанороботов включают использование рентгеновских лучей, радиоволн, микроволн или тепла. На данный момент наши технологии, использующие эти методы на наноразмерных объектах, ограничены, так что гораздо более вероятно, что будущие системы будут полагаться на другие методы.

Бортовые системы, или внутренние датчики, также могут сыграть большую роль в навигации. Нанороботы с химическими сенсорами могли бы обнаруживать и следовать по следам конкретных химических веществ для достижения правильного местоположения. Спектроскопический датчик позволил бы нанороботу забирать пробы и образцы окружающей ткани, анализировать их и идти дальше.

Как бы это странно не звучало, нанороботы могут быть оснащены миниатюрной телекамерой. Оператор мог бы управлять устройством во время просмотра живого видео, буквально вручную проводя корабль сквозь тело. Системы видеонаблюдения довольно сложны, поэтому понадобится по меньшей мере несколько лет, прежде чем нанотехнологи смогут создать надежную систему, которую можно будет поместить внутри крошечного робота.


Питание нанороботов

Так же, как о навигационных системах, нанотехнологи раздумывают о внешних и внутренних источниках питания. Некоторые проекты полагаются на нанороботов, использующих собственное тело пациента как способ выработки энергии. Другие проекты включают в себя небольшой источник энергии на борту самого робота. Наконец, некоторые проекты используют силы за пределами тела пациента для питания наноробота.

Нанороботы могут получать энергию непосредственно из кровотока. Наноробот с установленными электродами может сформировать батарею на основе электролитов, найденных в крови. Другой вариант заключается в создании химических реакций с кровью для превращения ее в энергию. Наноробот мог бы нести небольшой запас химических веществ, которые станут источником топлива в сочетании с кровью.

Наноробот может использовать тепло тела для выработки энергии, но должен быть градиент температур для управления этим процессом. Выработка энергии может быть результатом эффектом Зеебека. Эффект Зеебека возникает, когда два проводника из разных металлов соединены в двух точках, которые обладают разной температурой. Металлические проводники становятся термопарой, то есть создают напряжение, когда стыки находятся в разных температурах. Поскольку трудно рассчитать температурный градиент в теле, едва ли мы увидим нанороботов, использующих тепло тела для генерации энергии.

Поскольку есть возможность создания батарей, достаточно малых для размещения в нанороботах, они обычно не рассматриваются в качестве жизнеспособного источника питания. Проблема заключается в том, что батареи могут хранить относительно небольшое количество энергии, напрямую связанное с их размером и весом, и, таким образом, очень маленькая батарея обеспечит лишь малую часть необходимой нанороботу энергии. Более вероятным кандидатом является конденсатор, который имеет немного лучшее соотношение мощности к весу.

Инженеры работают над созданием небольших конденсаторов, которые смогут стать источником питания для нанороботов.

Еще один возможный источник питания нанороботов — ядерный источник энергии. Мысль о том, чтобы оснастить крошечного робота ядерной энергии может вызвать ужас у некоторых людей, но имейте в виду, что необходимое количество материала достаточно мало и, по мнению некоторых экспертов, его легко экранировать. Тем не менее общественное мнение по поводу ядерной энергии едва ли позволить сделать нанороботов на ее основе.

Внешние источники питания включают системы, когда нанороботы либо привязаны к внешнему миру, либо контролируются без физического поводка. Привязанная система потребует провода между наноботом и источником питания. Провод должен быть достаточно прочным, но также без проблем проходить сквозь тело человека, не нанося повреждений. Физический трос мог бы поставлять электроэнергию с помощь электричества или оптики. Оптические системы передают свет через оптоволокно, а он затем преобразуется в электричество на борту робота.

Внешние системы, которые не используют провода, могли бы полагаться на микроволны, ультразвуковые сигналы или магнитные поля. Микроволны наименее вероятны к использованию, поскольку могут повредить ткань пациента путем нагревания. Наноробот с пьезоэлектрической мембраной сможет подхватывать ультразвуковые сигналы и преобразовывать их в электричество. Системы, использующие магнитные поля, вроде тех врачей из Монреаля, о которых мы упоминали выше, могут также напрямую управлять нанороботом или индуцировать электрический ток в закрытой проводящей петле внутри робота.

Передвижение нанороботов

Если предположить, что нанороботы не будут привязаны или предназначены для пассивного течения через кровоток, им понадобится средство передвижения через тело. Поскольку им, возможно, придется плыть против течения крови, двигательная установка должна быть относительно мощная для своих размеров. Еще одним важным фактором является безопасность пациента — система должна быть в состоянии продвигать наноробота без ущерба хозяину.

Некоторые ученые наблюдают за микроорганизмами в поисках вдохновения. Парамеция может двигаться через среду, используя крошечные хвостики — реснички. Вибрируя ресничками, парамеция может плавать в любом направлении. Подобно ресничкам работают жгутики, более длинные хвостовые структуры. Организмы бьют жгутиками вокруг, чтобы двигаться в разных направлениях.

Израильские ученые создали микроробота, который всего несколько миллиметров в длину и использует маленькие придатки для захвата и ползания по кровеносным сосудам. Ученые манипулируют его конечностями, создавая магнитное поле за пределами тела пациента. Магнитное поле заставляет конечности робота вибрировать и толкать его по кровеносным сосудам. Ученые отмечают, что, поскольку вся энергия для наноробота берется из внешних источников, нет никакой необходимости оснащать механизм внутренним источником питания. Они надеются, что относительно простой дизайн позволит им сделать в скором времени еще более мелких роботов.

Другие устройства звучат еще более экзотически. Одно использует конденсаторы для генерации магнитных полей, которые бы протягивали проводящие жидкости из одного конца электромагнитного насоса и выстреливали бы их обратно. Наноробот двигался бы как реактивный самолет. Миниатюрные струйные насосы могут даже использовать плазму крови, чтобы подталкивать робота вперед, но, в отличие от электромагнитного насоса, в этих должны быть движущиеся части.

Другой потенциальный способ, которым могли бы передвигаться роботы — использование вибрирующей мембраны. Поочередно затягивая и ослабляя напряженность мембраны, нанороботы могли бы генерировать небольшую тягу. На наноуровне этой тяги может быть достаточно, чтобы стать основным источником движения.

Крошечные инструменты

Современные проверенные микророботы имеют всего несколько миллиметров в длину и около миллиметра в диаметре, но эти цифры уменьшаются ежегодно. По сравнению с наноуровнем, эти цифры просто огромны — нанометр представляет собой одну миллиардную долю метра, в то время как миллиметр — всего одну тысячную. Будущие нанороботы будут настолько малы, что вы сможете увидеть их только в микроскоп. Инструменты нанороботов должны быть еще меньше. Вот несколько вещей, которые вы можете обнаружить в инструментарии нанороботов:

  • Полость для медикаментов. Это пустая секция внутри наноробота, которая будет содержать небольшие дозы лекарств или химических веществ. Робот может высвобождать лекарства непосредственно в месте травмы или инфекции. Нанороботы также могут нести химические вещества, используемые в химиотерапии для лечения рака непосредственно на месте. Хотя количество лекарств будет относительно незначительным, применение их непосредственно к раковой ткани может быть более эффективным, чем традиционная терапия, которая опирается на систему кровообращения как способ перевозки химических веществ в теле пациента.
  • Зонды, ножи и стамески. Чтобы удалять блокады и бляшки, нанороботам нужно будет что-то, что сможет хватать и рушить. Также, возможно, понадобится устройство для разрушения тромбов на мелкие кусочки. Если часть тромба вырвется и попадет в кровоток, она может вызвать массу проблем.
  • Микроволновые излучатели и ультразвуковые генераторы. Чтобы уничтожать раковые клетки, врачам нужны методы, которые смогут убить клетку, не разрушив ее. Разорванная раковая клетка может выбросить химические вещества, которые спровоцируют дальнейшее распространение рака. Используя точные микроволны или ультразвуковые сигналы, наноробот может разрушить химические связи в раковой клетке, убив ее, не разрушая клеточные стенки. В качестве альтернативы робот может излучать микроволны или ультразвук для нагревания клетки, которого будет достаточно для ее уничтожения.
  • Электроды. Два электрода, выступающих из наноробота, смогут убить раковые клетки, генерируя электрический ток и нагревая клетку, пока она не умрет.
  • Лазеры. Крошечные мощные лазеры могут выжечь дотла вредные материалы вроде артериальных бляшек, раковых клеток или тромбов в крови. Лазеры буквально испарят это все.

Две самые большие проблемы, которые беспокоят ученых, — это как повысить эффективность этих миниатюрных инструментов и сделать их безопасными. Например, создать небольшой лазер, который будет достаточно мощным для испарения клеток, достаточно сложная задача, но сделать его безопасным для окружающей среды — еще сложнее. В то время как многие научные группы разработали нанороботов достаточно мелких, чтобы они могли попасть в кровеносную систему, это только первые шаги к созданию реально применяемых нанороботов.

Нанороботы: сегодня и завтра

Команды по всему миру работают над созданием первого практичного медицинского наноробота. Роботы от миллиметра в диаметре до относительно громоздких, в два сантиметра длиной, уже существуют, хотя и не испытываются на людях. Возможно, мы всего в нескольких годах от выхода нанороботов на медицинский рынок. Сегодняшние микророботы остаются прототипами, которым не хватает способностей выполнять медицинские задачи.

В будущем нанороботы могут совершить революцию в медицине. Врачи смогут лечить все, от сердечно-сосудистых заболеваний до рака, при помощи крошечных роботов, по размерам сопоставимых с бактериями, намного меньших, чем нынешние нанороботы. Некоторые считают, что полуавтономные нанороботы уже вот-вот будут доступны — доктора смогут имплантировать роботов, способных патрулировать человеческое тело и реагировать на любые проблемы. В отличие от экстренного лечения, эти роботы будут оставаться в теле пациента навсегда.

Другое потенциальное применение нанороботов в будущем — укрепление нашего тела, повышение иммунитета, увеличение силы или даже улучшение интеллекта. Сможем ли мы в один прекрасный день обнаружить тысячи микроскопических роботов, плывущих по нашим венам и вносящим коррекции и изменения в наши разрушенные тела? С нанотехнологиями, похоже, все будет возможно.

Медицина будущего будет строиться на работе нанороботов. Уже сейчас в этом направлении есть замечательные прорывы. Стоит отметить хотя бы респироцита – наноробота, который выполняет функции кровеносного эритроцита, но в отличие от последнего, способен “перевозить” в 256 раз больше кислорода. Но обо всем по порядку.

Итак, наноробот это устройство имеющее размеры 0,5 – 100 мкм. Такая разница в габаритах зависит от функционального назначения наноробота. Те устройства, которые будут введены в кровоток, должны иметь меньший диаметр для безопасного прохождения капилляров. Нанороботы, которые будут действовать в тканях, могут иметь больший диаметр.

Почему на нанороботов возлагается такая надежда? Давайте покажем на примере, уже упомянутого мной респироцита, все плюсы этой технологии. Представьте себе емкость, в которую можно закачать кислород под давлением 1000 атмосфер. Так как стенки емкости состоят из сверхпрочного алмаза, кислород будет хорошо заперт и высвободится только по “разрешению”.

Я уже писал, что респироцит это наноробот напоминающий эритроцит. Его главная задача перенос кислорода. Запустив его в участках организма, где этого газа в достатке, робот переносит его к нуждающимся клеткам. Один респироцит может заменит 256 эритроцитов. Но так как при инъекции в организм попадает до нескольких триллионов нанороботов, то можно спокойно задерживать дыхание на большой промежуток времени не боясь, что клетки недополучат кислород.

Конечно, перенос кислорода это простая функция, нанороботы будущего будут нацелены на выявление патагонных микроорганизмов. Уже сейчас разработана технология создания фагоцитов – нанороботов, которые уничтожают некоторые вирусы, бактерии и грибки.

Такое “популярное” недомогание как простуда, ни что иное, как биохимический процесс внутри организма, с которым легко справятся нанороботы, выявив и уничтожив болезнетворные организмы.
Респироциты — искусственные эритороциты
Большинство нанороботов будущего будут состоять из атомов изотопа углерода 13C. С помощью механосинтеза алмаза, когда в вакуумной среде к кристаллической решетке алмаза добавляют атомы, создается тело устройства. Его снабжают бортовым компьютером и передающим устройством.

В качестве топлива, нанороботы будут использовать локальные запасы глюкозы и аминокислот. Кроме этого, традиционного для нанороботов способа получения энергии, уже сегодня ведутся эксперименты по доставке акустической энергии для нанороботов.

Но как же иммунная система, которая призвана обезвреживать и выдворять за пределы организма всех нелегалов? Тут у разработчиков таких устройств есть богатый опыт производителей имплантатов. Проблема совместимости ими давно решена, и они легко помогут свои коллегам. Если же обойти проблему за счет структуры материалов, из которых будет изготовлен наноробот, не удастся, то можно воспользоваться иммуноподавляющими препаратами на время нахождения нанороботов внутри организма.

Ну и напоследок нужно сказать несколько слов о выводе нанороботов из организма. Большинство таких устройств будут иметь возможность выйти традиционным способом. Кроме того, некоторые нанороботы, вывести которые обычным способом не удастся, можно будет удалить из организма с помощью специально разработанных выводящее — подобных процессов. В некоторых источников такие процессы называют нановыводом или наноаперезисом.

Наномедицина позволит в будущем избавиться от большинства болезней XX века. Быть может уже через несколько лет из нашего обихода уйдет словосочетание “хирургический скальпель”. Все операции будут вестись с помощью микроскопических устройств, которые получили название нанороботы.

Статья на конкурс «био/мол/текст»: В книге «Машины создания » американского ученого Эрика Дрекслера была рассмотрена идея создания наноробота как «машины по ремонту клеток», которая смогла бы ставить диагноз, передавать информацию и создавать программу для лечения человека. Конечно, это звучит очень фантастично, но ученые уверяют, что в будущем такие «машины-нанороботы» помогут людям жить вечно: они смогут предотвратить множество болезней, излечиться от уже имеющихся и таким образом приблизиться к бессмертию. То, что это вполне возможно, доказывают современные научные исследования, а вот будет ли это доступным всем - совсем другой вопрос.

Спонсор номинации - .

Генеральным спонсором конкурса, согласно нашему краудфандингу , стал предприниматель Константин Синюшин , за что ему огромный человеческий респект!

Спонсором приза зрительских симпатий выступила фирма «Атлас ».

Спонсоры публикации этой статьи - Надежда и Алексей Браже.

Около 20 000 лет тому назад человек
начал одомашнивать растения и животных.
Сейчас наступило время одомашнивать молекулы.

Сьюзан Линдквист .

Представьте, что вы заболели обычной простудой и направляетесь к врачу за лечением, но вместо того, чтобы выписать вам таблетки или укол, он направляет вас в медицинский центр, который «запустит» в вашу кровь крошечных роботов. Они обнаружат причину заболевания, отправятся в нужную систему органов и доставят необходимую дозу лекарственного препарата непосредственно в «зону поражения». Вы удивитесь, но современная медицина не так уж и далека от таких устройств, которые уже отчасти используются. Эти специфические устройства названы нанороботами, которые создаются на основе наноэлектронных структур и биотехнологий и приобретают новые физико-химические свойства, отличающиеся от составляющих их молекул и атомов . Такие нанороботы будут способны функционировать в организме человека и выполнять разнообразные функции: от контроля молекулярных и клеточных процессов до диагностики и «ремонта» организма изнутри.

Наномедицина - что это?

Окружающий нас мир меняется все быстрее и быстрее, и реальным становится то, что раньше было лишь вымыслом футурологов. Наномедицина и нанотехнологии коренным образом меняют взгляд человека на окружающий мир. О наномедицине, способной показывать человеку «чудеса» регенерации, решать проблемы биологического старения и многое другое, можно говорить, как о новой вехе в развитии современной науки.

По определению Роберта Фрейтаса: «Наномедицина - это слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне с использованием разработанных наночастиц и наноустройств » . Возникновение наномедицины связывают с 1957 годом, когда будущий лауреат Нобелевской премии Ричард Фейнман прочитал лекцию в калифорнийском технологическом институте и произнес свою знаменитую фразу: «Внизу полным полно места » . Он указал мировому сообществу, что, несмотря на фундаментальные знания о микромире, человечество не умеет использовать все свои возможности для продуктивной работы в данной отрасли. В то время его слова казались фантастикой, и мало кто мог предположить, что уже через несколько десятилетий появятся технологии, способные работать на молекулярном и атомном уровнях.

«Молекулярные машины»

Один из основоположников нанотехнологических разработок американский ученый Эрик Дрекслер в своих фундаментальных работах описал новую медицинскую технологию - использование «молекулярных машин». Начало развития этого направления можно связать с 1986 годом, когда Эрик Дрекслер опубликовал книгу «Машины создания. Грядущая эра нанотехнологии ». Несколько позже, в 1991 году, он защитил докторскую диссертацию, а в 1992 году выпустил монографию «Наносистемы», где были изложены научные основания построения нанороботов - наномашин для ремонта клеток. По его мнению, медицинские нанороботы должны уметь диагностировать заболевания, доставлять лекарственные препараты, циркулировать в лимфатических и кровеносных сосудах человека и даже делать хирургические операции. Дрекслер предположил, что медицинские нанороботы предоставят возможность оживления людей, замороженных методами крионики .

Как же создать «конструктор» из атомов и молекул?

До сих пор не существует ни одной методики инженерного проектирования молекулярных структур в виде работоспособных крошечных роботов. Их еще предстоит разработать, но современные достижения науки настраивают на оптимизм: уже созданы моторчики диаметром 500 нм, которые могут использоваться в качестве двигателей для нанороботов , наножидкостные и наноэлектронные системы типа «лаборатории-на-чипе», разработано программное обеспечение для моделирования поведения нанороботов в организме человека. Существует практическая программа исследований, основанная Робертом Фрейтасом и Ральфом Мерклом в 2000 году и направленная на создание алмазной механосинтетической фабрики, которая будет создавать нанороботов на основе алмазных соединений .

В 2016 году за разработку молекулярного двигателя Бернарду Ферринге была присуждена Нобелевская премия по химии: «Наноавтомобиль, молекулярный лифт и искусственные мышцы - названы лауреаты Нобелевской премии по химии 2016 » . - Ред.

Наряду с нанороботами из алмазоидов, биоинженеры планируют активно создавать нанороботов из клеточных органелл и других биологических объектов: с митохондриями вместо аккумуляторов, миозиновыми волокнами для движения белковых жгутиков, рибосомами для синтеза необходимого белка, антителами для распознавания молекул, молекулами ферментов, вакуолями с самостоятельно синтезированным лекарственным веществом. Фактически это будет искусственно сконструированная живая клетка с заданными функциями , . Геномика и протеомика развиваются такими темпами, что получение биологических нанороботов будет эффективным добавлением к механическим нанороботам.

Несмотря на все достижения науки, действующие и эффективные конструкции нанороботов пока не разработаны и находятся на стадии задумок и проектирования. Есть три основных момента, на которых должны сосредоточиться ученые: навигация, питание и передвижение нанитов по кровеносным сосудам. Нанотехнологи рассматривают различные варианты для каждого из этих аспектов.

1. Навигация нанороботов

Внешние навигационные системы могут использовать множество различных методов, чтобы доставить наноробота в нужное место. Один из таких методов - применение ультразвуковых сигналов для обнаружения местоположения наноробота и направления его в место назначения. Врачам отправляли бы ультразвуковые сигналы в тело пациента и регистрировали их, работая на специальном оборудовании с ультразвуковыми датчиками.

Используя магнитно-резонансную томографию (МРТ), врачи могли бы определять местонахождение наноробота и отслеживать его по магнитному полю.

2. Питание нанороботов

В качестве основных источников энергии предполагается использование собственных запасов непосредственно из кровотока человека. Наноробот с установленными электродами может сформировать «батарею» на основе электролитов, найденных в крови. Другой вариант заключается в создании химических реакций с кровью для превращения ее в энергию.

Также существует предположение по дополнению функции митохондрий глюкозным механохимическим реактором.

3. Передвижение нанороботов

В настоящее время уже разработано несколько нанодвигателей различных типов, которые в будущем смогут обеспечить нанороботам перемещение в пространстве. Одним из таких двигателей является диэлектрофорезный наномотор . Работа двигателя построена на процессе притягивания и отталкивания частиц в сильном неоднородном электростатическом поле.

Другой вариант нашли израильские и немецкие ученые из Технологического института Технион (Израиль), Института интеллектуальных систем Макса Планка (Германия) и Института физической химии университета Штутгарта (Германия). В статье, опубликованной в сентябрьском выпуске ACS Nano 2014 года, израильская и немецкая команда объявила, что им удалось создать крошечный винтообразный придаток, который может двигаться в гелеобразной жидкости, имитирующий окружающую среду внутри живого организма . Форма нанопропеллера далека от форм пропеллеров, которые мы привыкли видеть. Исследователи придали своему нанодвигателю форму спирали, которая представляет собой закрученную нить из кварца и никеля. Ширина спирали составляет 70 нанометров, а длина - 400 нанометров. Такие размеры делают спираль нанодвигателя в 100 раз меньше диаметра клетки крови человека. При этом управление происходит за счет переменного магнитного поля, полностью исключающего какие-либо виды облучения человеческого организма. Меняя параметры данного поля, ученые регулируют направление и скорость движения механизма, доставляя его точно в заданную точку тела.

Прототипы нанороботов

С каждым годом микроробототехника существенно продвигается вперед. Только за последнее десятилетие в этой сфере появилось сразу несколько прорывных технологий.

1. ДНК-нанороботы

В 2014 году команда исследователей из Университета Бар-Илан в Израиле опубликовала статью в журнале Nature Nanotechnology , в которой продемонстрировала возможность создания нескольких нанороботов на основе нитей ДНК, которые затем были введены в организм лабораторных тараканов . Эти ДНК-наноботы представляли собой свернутые особым образом и имеющие заданную последовательность молекулы ДНК, которые, попав в среду живого организма, начинали разворачиваться и взаимодействовать друг с другом и с клетками этого организма. Исследователи «размотали» нити ДНК, а затем «связали» их в новую структуру, похожую на «коробку-оригами» . В нее затем поместили по одной химической молекуле (рис. 1). При столкновении с определенными белками «ДНК-коробка» открывалась и высвобождала заключенные в изгибах ДНК химические частички, которые могли действовать согласно заложенной в них программе на процессы жизнедеятельности клеток организма или выступать в качестве лекарственных препаратов. Нанороботы были снабжены метками светящегося материала, благодаря которому было возможно определять их положение в пространстве и следить за перемещением. Во время эксперимента ДНК-нанороботы показали высокую точность функционирования и взаимодействия между собой, граничащую с точностью работы компьютерной программы.

Подробнее метод ДНК-оригами рассматривается в статьях: «ДНК-оригами: путь от гравюры до нанороботов длиной в 30 лет » , «Голактеко опасносте: ДНК-роботы в живом организме » и «Биоинженеры научились получать ДНК-структуры, сборкой и разборкой которых можно управлять » . - Ред.

Рисунок 1. Робот представляет собой шестигранную призму, внутри которой спрятан «важный груз» - в данном случае, антитело, способное связываться с клетками крови тараканов. На рисунке - скриншот программы caDNAno, позволяющей моделировать структуру ДНК-оригами и подбирать необходимые для конструкции нуклеотидные последовательности.

2. Наноробот - морской гребешок

Ученые из Института интеллектуальных систем Макса Планка в 2014 году сконструировали необычного микроскопического робота для передвижения по жидкостям человеческого тела. Отличает его от всех прежних прототипов сходство с морским гребешком (рис. 2). Подобно этому моллюску наноробот способен передвигаться за счет движений створок «раковины» с помощью реактивной тяги. При этом роботу достаточно энергии внешнего электромагнитного поля, что позволило обойтись без источника питания и уменьшить размеры раковины .

Рисунок 2. «Целебные гребешки». Такой механизм плавания нанороботов из полидиметилсилоксана открывает новые возможности в проектировании биомедицинских микроприборов.

3. «Цинковые наноракеты»

Исследователи из Калифорнийского университета Сан-Диего в 2015 г. создали нанороботов, способных перемещаться внутри живого организма и доставлять груз лекарственных препаратов в необходимое место, не влияя на организм . Микродвигатель этих «молекулярных машин» имеет химическую природу и продвигает наноботов за счет пузырьков газа, выделяющихся в ходе реакции между жидкостью внутри организма и материалом, находящемся в двигателе (рис. 3). Подопытными живыми организмами были грызуны. Наниты, изготовленные из специального полимера, имели форму трубки длиной около 20 микрометров и диаметром 5 микрометров и были покрыты толстым слоем цинка. Нанороботы вводились в пищеварительный тракт животного и достигали его желудка, где цинк начинал реагировать с соляной кислотой, входящей в состав пищеварительных соков. Выделяющийся при этом водород вырывался из внутренней полости трубок-наноботов, превращая их в подобие миниатюрных ракет (видео 1).

Рисунок 3. Устройство цинковых наномоторов. а - Механизм работы «цинкового мотора». б - Построение микродвигателей с помощью поликарбоната. в - Цинковые «наноракеты» под микроскопом. г - Фазы движения нанороботов.

Они развивали скорость около 60 микрометров в секунду, были способны покидать пределы желудка и закрепляться на стенках кишечника, где высвобождали наночастицы из лекарственных препаратов. Согласно данным, полученным в ходе эксперимента, наноботы оставались прикрепленными к стенкам кишечника в течение 12 часов, даже несмотря на прием пищи подопытным животным, что является доказательством их эффективности.

4. «Шустрые» наниты

Одним из последних достижений в области наноробототехники является создание исследователями из Университета Дрекселя крошечных роботов, способных развивать большую скорость в жидкой среде . Нанороботы представляют собой цепочки из крошечных круглых частиц. Магнитное поле вращает частицы, подобно винту. При этом, чем длиннее цепочка, тем бóльшую скорость она может развить (рис. 4). Ученые создавали различных роботов: начиная с цепочки из трех «бусин» до цепочки из 13 частиц, которая достигала скорости 17,85 микрометра в секунду (видео 2). Движение наноботов было возможно благодаря применению внешнего магнитного поля. Чем быстрее была скорость вращения поля, тем быстрее перемещались цепочки. При этом высокая частота приводила к деформации цепочек и способствовала их разделению на более мелкие цепочки: из трех или четырех частиц. Ученые планируют использовать эти устройства в будущем для доставки лекарственных веществ по кровеносным сосудам.

По образу и подобию

Какой станет медицина будущего? Как она изменит нас и наше отношение к жизни? Смогут ли «нанороботы-врачи» заменить человека? Эти вопросы звучат, как нечто фантастическое. Несмотря на то, что конструкция медицинских нанороботов существует пока в головах ученых, уже сейчас можно с гордостью говорить о достижениях нанотехологии в медицине: это и адресная доставка лекарств, и контроль биохимии процесса лечения, и диагностика заболеваний с помощью квантов, и лаборатория на чипе .

Ожидается, что достижения в наноробототехнике станут доступными не ранее, через полвека, однако последние разработки в этой отрасли вселяют уверенность в то, что это произойдет намного раньше. Будем надеяться, что через пару веков гений человека сможет на практике использовать нанороботов в хирургических операциях, в лечении разнообразных заболеваний и, в конце концов, для оживления и «ремонта» человека

Мир все чаще говорит о нанотехнологиях. Правительства многих государств вкладывают огромные средства в их разработку, подводя цивилизацию на порог новой научно-технической революции.

Революция в медицине

Впервые слово «нанотехнология» мир услышал еще в 1959 году. Прошло каких-то полвека, а о нанотехнологиях не говорит разве что ленивый. Хотя до сих пор так и не удалось понять до конца, что же это такое? Условно считается, что это технологии, которые позволяют манипулировать частицами размером от 1 до 100 нанометров – это миллионная доля кончика швейной иголки!

Ученые говорят, что с помощью нанотехнологий человечество получит карт-бланш для решения многих проблем, особенно в медицине . Хотя пока еще как таковой наномедицины не существует, есть все основания полагать, что она уже зарождается. Во многих странах, в т.ч. и в Украине разрабатываются проекты с применением наночастиц.

Говоря о наночастицах, нужно отметить, что, по сути, мы имеем дело с отдельными молекулами и атомами. Все мы знаем, что и графит в простом карандаше и алмаз состоят из углерода. Разница лишь в том, как атомы этого вещества расположены. Условно, то же самое мы можем говорить и о здоровом и нездоровом органе человека. Таким образом, с помощью нанотехнологий появится возможность существенно влиять на структуру материалов. И сюжеты фантастических фильмов, где люди научились выращивать отдельные ткани и органы человека, постепенно становятся реальностью.

Молекулярные врачи

Специалисты в области нанотехнологий уже всерьез занялись созданием молекулярных роботов-врачей, которые с очень высокой точностью и без хирургического вмешательства смогут устранять всяческие неполадки в организме человека. Такие нанороботы, к примеру, смогут устранять лишний , очищать кровеносные сосуды, уничтожать вирусные инфекции, а также доставлять лекарства непосредственно к тому органу, где это необходимо. В случае с лекарствами решится огромная проблема в устранении побочных эффектов. Уже сегодня создаются нанороботы, которые могут отличать раковые клетки от нормальных. Таким образом, появится возможность избирательно уничтожать плохие клетки в организме, не причиняя вред здоровым. Также решится проблема с генетическими отклонениями, ведь наследственные болезни считаются сегодня практически неизлечимыми, т.к. причина этих недуг кроется в нашем геноме, которого никак нельзя изменить. С помощью нанороботов (в виду их предельно малых размеров) появится возможность осуществлять «ремонт» генов, устраняя в них аномальные последовательности и иные структурные нарушения.

Победить старение

Известный американский изобретатель Рей Курцвейль, которого газета «Wall Street Journal» окрестила «неутомимым гением», уже к 2030 году пророчит масштабное сожительство людей и машин, в частности наномашин. К этому времени появится возможность запустить миллиарды нанороботов в кровеносную систему человека. Это как безупречно налаженные коммунальные службы города. Молекулярные роботы в нашем организме займутся «строительством» нового материала и устранением изношенного. Появится возможность восстанавливать отдельно взятую клетку путем налаженной сборки отдельных молекул. Причем эти хитроумные машины, путешествуя по магистралям наших , будут сами находить ту или иную неполадку в организме, и с легкостью с ней бороться. По сути дела, мы можем говорить о существенном замедлении старения организма, ведь все факторы, из-за которых мы стареем, будут сразу устраняться. Ряд ученых даже осмеливается прогнозировать бессмертие человека, в котором будут работать эти чудо-машины.

В скором будущем

Роботизированные системы в лечении зрения

Фемтосекундный лазер – наивысшее достижение мировой офтальмологии в области роботизированной хирургии глазных заболеваний. До недавнего времени операцию при помощи такой установки можно было сделать только в избранн

Говорить о том, когда именно человек сможет сожительствовать с нанороботами пока рано. Некоторые ученые осмеливаются предполагать, что это станет возможным в ближайшие 20 лет, другие же не так оптимистичны в прогнозах, и считают, что в лучшем случае подобный технологический прорыв станет возможным в конце этого века. Проблемы с прогнозами ученых во многом продиктованы не достаточными знаниями. До сих пор о наномире известно еще очень немного. В этой связи многие ученые с опаской смотрят на внедрение нанотехнологий в медицину. Ведь если нанороботы смогут менять гены человека, то это будет приводить к определенным трансформациям, которые будут происходить сразу, а не эволюционным путем на протяжении сотен тысяч лет.

Если же ученым удастся полностью проконтролировать этот процесс, то нанороботы смогут постоянно корректировать все физиологические функции организма, давая возможность человечеству избавиться от необходимости посещать врачей.