Общие свойства разрядов, классификация разрядных ламп и области их применения. Виды газоразрядных ламп и область их применения Лампы, относимые к энергосберегающим

Газоразрядная лампа - это источник света, излучающий энергию в видимом диапазоне. Свечение в лампе создается непосредственно или опосредованно от электрического разряда в газе, парах металла или в смеси пара и газа.

Все газоразрядные лампы можно разделить на четыре основные группы:

Для расчёта освещенности помещения вы можете воспользоваться калькулятором расчета освещенности помещения .

Газоразрядная лампа состоит из стеклянной, керамической или металлической (с прозрачным выходным окном) оболочки цилиндрической, сферической или другой формы, которая содержит газ, иногда небольшое количество металла или др. вещества (например, галоидной соли) с предельно высокой упругостью пара..

Устройство газоразрядных ламп.

3.Горелка;

4.Основной электрод;

5.Поджигающий электрод;

6.Токоограничительный резистор

Характеристики газоразрядных ламп.

  • срок службы от 3000 часов до 20000;
  • эффективность от 40 до 220 лм/Вт;
  • цвет излучения: от 2200 до 20000 К;
  • цветопередача: хорошая (3000 K: Ra>80), отличная (4200 K: Ra>90);
  • компактные размеры излучающей дуги, позволяют создавать световые пучки высокой интенсивности.

Газоразрядные лампы делятся на три типа:

  • газоразрядные лампы низкого давления (от 0,1 до 25 кПа) - люминесцентные лампы;
  • газоразрядные лампы высокого давления (от 25 до 1000 кПа) лампа ДРЛ;
  • газоразрядные лампы сверхвысокого давления (от 1000 кПа) РЛСВД лампы.

Разрядные лампы высокого давления это что то среднее между лампами накаливания и люминесцентными лампами. Из за повышенной по сравнению с люминесцентными лампами мощности, газоразрядные лампы позволяют добиться интенсивного, концентрированного света, при этом сохраняя все преимущества газоразрядной технологии (экономичность и гибкость в выборе цветности).

Газоразрядные лампы применяют для общего освещения, облучения, сигнализации и других целей..

Принцип действия газоразрядных ламп высокого давления.

Электрические разряды между электродами вызывают свечение наполнителя в разрядной трубке. Излучаемый лампой свет является следствием происходящих в ней дуговых разрядов. Для ограничения тока и для зажигания всем газоразрядным лампам необходимы специальные ПРА . В отличие от газоразрядных ламп (например, ксеноновых ламп) паросветным лампам после зажигания необходимо определенное время пускового режима (2-3 минуты), чтобы достичь своей полной световой отдачи. Это время необходимо собственно для того, чтобы вещества-наполнители могли полностью испариться.

Преимущества газоразрядных ламп.

  • высокий КПД;
  • длительный срок службы по сравнению с лампами накаливания;
  • экономичность;
  • высокая степень цветопередачи;
  • хорошая стабильность цвета;
  • хорошие характеристики светового потока в течение всего срока службы.

Недостатки газоразрядных ламп

  • высокая стоимость;
  • необходимость пускорегулирующей аппаратуры;
  • долгий выход на рабочий режим;
  • высокая чувствительность;
  • наличие токсичных компонентов и как следствие необходимость в инфраструктуре по сбору и утилизации;
  • невозможность работы на любом роде тока;
  • невозможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);
  • наличие мерцания и гудения при работе на переменном токе промышленной частоты;
  • прерывистый спектр излучения;
  • непривычный в быту спектр.

Газоразрядная лампа – разновидность искусственного источника света, физической основой свечения которого выступает электрический разряд в газах либо парах металла. Благодаря линейному спектру излучения такие лампы изначально использовались в случаях, когда требовалось получение определенного спектрального излучения. Таким образом, появилась огромная номенклатура таких устройств, предназначенных для использования в научно-исследовательских приборах и профессиональной аппаратуре.

Особенность газоразрядных ламп является создания яркого ультрафиолетового излучения, высокая химическая активность и биологическое действие, обусловили их широкое применение в химической, полиграфической промышленности и в медицине.

Внедрение технологии использования люминофоров, позволяющей создать источник света с непрерывным свечением в видимой области, предоставило возможность отказаться от использования привычных ламп накаливания и предопределило перспективу внедрения газоразрядных источников в осветительных установках различного типа и назначения.

Безинерционность газового разряда позволяет использовать их в фото-, вычислительной технике, создавать лампы накаливания, способные генерировать в кратковременном световом импульсе достаточно мощную световую энергию. Также широкое распространение они получили при освещении зданий, витрин, декоративной подсветке тротуаров, художественном оформлении кинотеатров, ресторанов и т.п.

Классификация газоразрядных ламп

Подобно лампам накаливания газоразрядные источника света различаются сферой применения, типом разряда, внутренним давлением, видом газа либо паров металла, применением люминофора. В соответствии с классификацией заводов-производителей они также отличаются характерными особенностями конструкций, к которым относятся форма, размеры колбы, используемые материалы и конструкция электродов, внутреннее исполнение цоколя и выходов.

Другими словами, признаков классификация газоразрядных ламп достаточно много, из-за чего может возникнуть путаница. Поэтому внедрен определенный список, в соответствии с которым их и различают, в него входят:

1. Вид внутреннего газа (газы, пары металлов или их комбинации – ртуть, ксенон, криптон, натрий и пр).

2. Внутреннее рабочее давление (лампы сверхвысокого давления — 106 Па и более, высокого –3 × 104 — 106 Па, низкого – 0,1 — 104 Па).

3. Вид внутреннего разряда (тлеющий, дуговой, импульсный).

4. Форма колб бывает: Ш – шаровой, Т – трубчатой.

5. Исходя из метода охлаждения их делят: на устройства с принудительным, естественным и водяным охлаждением.

6.Если в обозначении присутствует буква Л, то это означает, что на колбу был нанесен люминофор.

Плюсы и газоразрядных ламп

Преимущества:

— превосходная эффективность;

— продолжительный срок службы;

— экономичность.

Недостатки:

— относительно большие габариты;

— потребность в комплектации пускорегулирующей аппаратурой, что обуславливает её более высокую стоимость в сравнении с лампами накаливания;

— продолжительный выход на рабочий режим;

— чувствительность к перепадам и скачкам напряжения;

— использование при их изготовлении токсических компонентов, что обуславливает необходимость проведение определенного порядка утилизации;

— мерцания, звуковое сопровождения во время работы.

Разрядным источником света или разрядной лампой (РЛ) называют электрическую лампу, в которой свет создается в результате электрического разряда в газе и (или) парах металла (ГОСТ 15049--81, СТ СЭВ 2737--80).

Принцип устройства и применяемые типы разрядов.

Подавляющее большинство разрядных ламп представляют собой прозрачную для оптического излучения колбу цилиндрической, сферической или иной формы. В колбу герметически впаяны два основных электрода, между которыми происходит разряд. Иногда для облегчения зажигания впаивают дополнительные электроды. Внутреннее пространство колбы после удаления воздуха и тщательного обезгаживания лампы (удаление сорбированных в материале колбы и электродах паров воды и других газов при помощи нагрева под откачкой) наполняется определенным газом (чаще всего инертным) до различного давления или инертным газом и небольшим количеством металла с высокой упругостью паров, например ртутью, натрием и др. Начиная с середины 60-х годов широкое распространение получают лампы, в которые кроме инертного газа и ртути вводят специальные излучающие добавки, представляющие собой большей частью галогениды различных металлов.

Существует категория разрядных ламп с электродами, работающими в открытой атмосфере, у которых разряд происходит в воздухе и в парах вещества электродов. Это угольные дуги. В этом типе ламп во время работы расходуется материал электродов. В специальных типах ламп разряд горит в проточном газе.

Существуют также лампы, в которых используется высокочастотный безэлектродный разряд. Они представляют собой запаянную колбу без электродов, содержащую необходимые газы или пары.

В РЛ стационарного действия обычно используются два типа разряда: тлеющий и дуговой, в источниках импульсного действия -- так называемый импульсный разряд. В соответствии с этим различают лампы тлеющего, дугового и импульсного разрядов.

Тип разряда, устанавливающийся в лампе после зажигания, определяется условиями во внешней цепи (значениями питающего напряжения, балластного сопротивления), типом катода и давлением газа или пара, наполняющего лампу.

Тлеющий разряд происходит при малых плотностях тока на катоде и низких давлениях газа или пара, не превышающих нескольких тысяч паскалей (десятки мм. рт. ст.). Его особенностью является большое падение напряжения у катода, составляющее 50--400 В.

Дуговой разряд отличается от тлеющего высокими плотностями тока на катоде (102--104 А/см2) и малым околокатодным падением потенциала (5--15 В). Он может происходить в широком диапазоне давлений (от 0,1 до 1 * 107 Па) и токов (от десятых долей до сотен ампер). По физическим процессам и по характеру излучения он может быть разделен на приэлектродные области и столб. Столб дуговых разрядов низкого давления подобен столбу тлеющих разрядов, происходящих при одинаковых давлениях, диаметрах и токах. Столб дуг высокого и сверхвысокого давлений имеет ряд характерных особенностей, рассмотренных в гл. 4, 14--19.

Импульсный разряд -- разновидность нестационарного разряда, отличающаяся высокой концентрацией мощности при малой длительности (не превышающей 5-Ю-3 с).

В РЛ стационарного действия наиболее широко используются дуговые разряды, так как с их помощью удается создавать источники с весьма разнообразными характеристиками, обладающие высокой эффективностью при сравнительно низких рабочих напряжениях.

В подавляющем большинстве ламп используется излучение столба, обладающее значительно более высоким КПД по сравнению с излучением приэлектродных частей и позволяющее в широких пределах изменять размеры и характеристики светящейся области. Излучение приэлектродных областей, например тлеющее свечение, используется только в специальных типах ламп.

Классификация PЛ может проводиться по различным признакам. Ввиду большого разнообразия свойств РЛ и применяемости одних и тех же ламп в различных областях ниже приведена классификация по физическим признакам, которые характеризуют все основные свойства разряда, такие, как спектр излучения, распределение интенсивности излучения в спектре, яркость, градиент потенциала, энергетический КПД и др. Все эти свойства разряда определяются в первую очередь составом газовой среды, в которой происходит разряд, парциальными давлениями компонентов газовой смеси и силой тока. Вместе с типом разряда, используемой областью свечения и размерами газового промежутка, они определяют мощность и напряжение, габариты и конструкцию лампы и ее узлов, их тепловой режим, выбор материалов и связанные с этим особенности эксплуатации и области применения.

По составу газовой или паровой среды, в которой происходит разряд, лампы делят на лампы с разрядом в газах, в парах металлов и в парах металлов и их соединений.

По величине рабочего давления -- на лампы низкого давления (НД) примерно от 0,1 Па до 25 кПа, высокого давления (ВД) от 25 до 1 - 103 кПа и сверхвысокого давления (СВД) больше 1 - 103 кПа.

По типу разряда -- на лампы дугового, тлеющего и импульсного разрядов.

По области свечения -- на область столба и область тлеющего свечения.

По типу источника излучения -- на:

газо- или паросветные, в которых основным источником излучения являются возбужденные атомы, молекулы или рекомбинирующиеся ионы;

фотолюминесцентные (называемые для краткости просто люминесцентные), в которых основным источником излучения являются люминофоры, возбуждаемые излучением разряда;

электродосветные, в которых основным источником излучения являются электроды, раскаленные в разряде до высокой температуры.

У большинства фотолюминесцентных и электродосветных ламп к основному виду излучения примешивается излучение разряда, так что они являются, по существу, источниками смешанного излучения.

По форме колбы лампы со столбом подразделяют на:

трубчатые или линейные -- лампы в цилиндрических колбах, у которых расстояния между электродами в 2 и более раз превышают внутренний диаметр трубки;

капиллярные -- в трубках с внутренним диаметром меньше 4 мм;

«шаровые» -- лампы с расстоянием между электродами, меньшим или равным внутреннему диаметру колбы (колбы ламп имеют часто форму шара или близкую к ней, откуда и получили свое название), их называют также лампами с короткой или средней длиной дуги.

По охлаждению лампы подразделяют на лампы с естественным и принудительным (воздушным или водяным) охлаждением.

В некоторых типах ламп разрядную колбу, часто называемую горелкой, помещают во внешнюю колбу, которая чаще всего служит для обеспечения теплового режима горелки, но вместе с тем может выполнять и другие функции.

Области применения PЛ.

Давно было известно, что ртутные лампы высокого давления и натриевые лампы низкого давления обладают высокими световыми отдачами. Однако попытки применения этих ламп для целей освещения не имели успеха из-за сильного искажения цветопередачи, особенно цвета человеческой кожи. Впервые этот недостаток удалось преодолеть в ртутных люминесцентных лампах низкого давления. Их появление в 1938 г. ознаменовало собой новый этап в развитии разрядных источников света. Впервые были созданы ЛЛ, дающие излучение с непрерывным спектром практически любого состава и обладающие при этом световой отдачей и сроком службы, в несколько раз превышающими световые отдачи и сроки службы ламп накаливания. Световые отдачи современных ЛJI достигают 85--90 лм/Вт, а сроки службы 12--15 тыс. ч и более. В настоящее время ЛЛ являются наиболее массовым разрядным источником света, применяемым для освещения. Их мировой выпуск достигает почти 1 млрд. ламп в год.

В начале 50-х годов появились ртутные лампы высокого давления с исправленной цветностью типа ДРЛ. Эти лампы, обладающие высокой светоотдачей (45--60 лм/Вт) и сроком службы 10--15 тыс. ч, получили в настоящее время весьма широкое применение. Их мировой выпуск достигает многих десятков миллионов ламп в год и продолжает расти.

В 60-х годах были открыты новые, исключительно плодотворные направления в создании разрядных ламп высокой интенсивности с самым различным спектром излучения и более высокими КПД, чем у существовавших до этого. Впервые для ламп высокой интенсивности удалось перешагнуть рубеж в 100 лм/Вт. Уже разработано и выпускается большое число новых типов, которые по многим параметрам значительно превосходят ртутные лампы высокого давления типа ДРЛ и занимают видное место в семье разрядных источников света. Это натриевые лампы высокого давления в колбах из кристаллического оксида алюминия, широко применяемые для наружного освещения, и различные типы так называемых металлогалогенных ламп.

Наряду с освещением разрядные лампы находят многочисленные и весьма важные применения во многих отраслях народного хозяйства, в новейшей технике и в военном деле, что объясняется особенностями электрического разряда, которые позволяют создавать источники излучения с очень разнообразным сочетанием параметров. Путем подбора соответствующего наполнения и условий разряда удается создавать высокоэффективные источники излучения практически в любой части не только видимого, но также УФ- и ИК-областей спектра, при этом можно получать спектры излучения, состоящие из одиночных линий, многолинейчатые и непрерывные.

Это достоинство РЛ открыло им исключительно широкие возможности применения не только для освещения, но также для многочисленных специальных целей. Так, например, в промышленности, сельском хозяйстве, медицине и других отраслях народного хозяйства широко используются фотолюминесценция, фотохимические, биологические, бактерицидное и другие действия УФ-излучения; красное излучение неона применяется для сигнального освещения, ИК-излучение -- для лучистого нагрева, сигнализации, связи и т. д.

Разряды высокого и особенно сверхвысокого давления имеют высокие яркости в различных областях спектра, в десятки и сотни раз превосходящие яркости ламп накаливания, благодаря чему они с успехом применяются в различных светооптических приборах и установках.

Малая инерционность излучения разряда является недостатком для общего освещения, поскольку она приводит к большим пульсациям, светового потока при работе в стандартных сетях переменного тока с частотой 50 Гц. В то же время она открывает РЛ множество специальных применений там, где требуется модуляция излучения.

Широкое и весьма разнообразное применение находят импульсные лампы, дающие вспышки излучения исключительно высокой яркости и очень малой длительности. Они применяются в многочисленных приборах и установках для наблюдения и изучения быстродвижущихся частей машин и механизмов (в стробоскопах), при фотографировании и изучении быстро- протекающих процессов, аэрофотосъемке, оптической дальнометрии и т. д. В настоящее время импульсные лампы широко применяются для оптической накачки лазеров.

Наряду со многими достоинствами РЛ имеют и недостатки, главным из которых является некоторая сложность их включения в сеть, связанная с особенностями разряда. При зажигании требуются более высокие напряжения, чем при устойчивом горении. Для обеспечения устойчивого режима горения в цепь каждой лампы приходится включать балласт, ограничивающий ток разряда требуемыми пределами.

Характеристики ламп с разрядом в парах металлов или веществ зависят от их теплового режима, и их нормальный режим устанавливается только спустя некоторое время после включения. Повторное зажигание ламп с разрядом в парах металла при высоком и сверхвысоком давлениях без специальных приемов возможно только по истечении некоторого времени после выключения.

Электрические устройства, состоящие из прозрачного контейнера, в котором газ питается от напряжения, благодаря чему происходит процесс свечения, называются газоразрядные лампы. Предлагаем рассмотреть, чем разнятся лампы газоразрядные высокого давления и лампы накаливания, как работает данное устройство и где их купить.

Принцип работы газоразрядной лампы

Газоразрядная лампа является источником свечения, который генерирует свет, создавая электрический разряд через ионизированный газ. Как правило, эти лампы используют такие газы, как:

  • аргон,
  • неон,
  • криптон,
  • ксенон, а также смеси этих газов.

Много ламп заполнены дополнительными газами, такими как натрий и ртуть, в то время как другие используют металлогалогенные добавки.

При подаче питания на лампу, электрическое поле генерируется в трубке. Это поле образует включения свободных электронов в ионизированный газ, т.е. обеспечивает столкновение электронов с газом и атомами металла. Некоторые электроны, вращающиеся вокруг этих атомов, обеспечивают столкновения в более высокое энергетическое состояние. В таких случаях высвобождается энергия фотонов. Этот свет может быть каким угодно от инфракрасного видимого и до ультрафиолетового излучения. Некоторые лампы имеют люминесцентное покрытие на внутренней стороне колбы для преобразования ультрафиолетового излучения в видимый свет.

Некоторые лампы трубчатой формы содержат специальный источник бета-излучения, чтобы обеспечить ионизацию газа внутри. В этих трубах, тлеющий разряд, обеспеченный катодом, сведен к минимуму, в пользу так называемого положительного столба энергии. Самый яркий пример такой технологии – энергосберегающие неоновые лампы, газоразрядные импульсные ифк и флуоресцентные.

Газоразрядные лампы и виды катодов

Многие слышали термин газоразрядные люминесцентные лампы с холодным катодом CCFL и приборы для освещения с горячим катодом. Но в чем разница, какая их маркировка и какие выбрать?

С горячим катодом

В горячие катоды генерирует электроны сам электрод с термоэлектронной эмиссией. Именно поэтому они еще называются термоэлектронными катодами. Катод обычно представляет собой электрическую нить из вольфрама или тантала. Но теперь они еще покрываются слоем эмиссионного материала, что может производить больше меньше тепла и света, тем самым увеличивая эффективность и световой поток газоразрядной лампы. В некоторых случаях, когда жужжание переменного тока является проблемой, нагреватель электрически изолирован от катода. Этот метод широко используют газоразрядные металлогалогенные лампы (hpi-t plus, deluxе, hid-8) и светильники низкого давления.

Фото: металлогалогеновые лампы с горячим катодом

Источники света с горячими катодами производят значительно большее количество электронов, чем холодные катоды с той же площадью поверхности. Их используют индикаторные устройства, микроскопы, и даже такие лампы применяют для модернизации электронных пушек.


Фото: металлогалогеновые лампы вытянутой формы с горячим катодом

С холодным катодом

С холодным катодом не производится термоэлектронная эмиссия. Высоковольтные лампы в данном случае, работают на электродах, генерирующих сильное электрическое поле (допустим, марки make), которое ионизирует газ. Поверхность внутри трубки способна производить вторичные электроны, и при этом свести их «падение» к минимуму. Некоторые трубы содержат специальное заземление, которое улучшает эмиссию электронов.

Другой метод работы холодных световых приборов основан на генерации свободных электронов без термоэлектронной эмиссии, за счет полевой электронной эмиссии. Полевая эмиссия происходит в электрических полях, которые создают очень высокое напряжение. Этот метод используется в некоторых рентгеновских трубках, микроскопах, работающих за счет электрических полей, а также его применяют газоразрядные натриевые лампы (lhp, днат 400 5, днат 70, днат 250-5, днат-70, hb4).

Термин «холодный катод» не означает, что он остается в температуре окружающей среды все время. Рабочая температура катода может увеличиваться в некоторых случаях. Например, при использовании переменного тока, из-за чего электроды поменялись местами – стали катод стал анодом. Некоторые электроны также могут вызвать локализацию тепла. Например, люминесцентные лампы: после запуска, вольфрамовая проволока холодная, лампа работает с холодным катодом и явление, описанное выше, используется для нагрева нити. Когда она достигла нужного уровня света, светильник работает нормально, как с горячим катодом. Подобное явление могут демонстрировать некоторые газоразрядные ксеноновые лампочки дрл (d2s, h4 категории d).

Холодный катод устройства требует высокого напряжения, но при этом высоковольтный источник питания не требуется. Это часто явление называется CCL инвертором. Работа инвертора заключается в создании высокого напряжения для организации начального пространственного заряда и первой электрической дуги тока в трубке. Когда это происходит, внутреннее сопротивление трубки уменьшается и увеличивает ток. Преобразователь реагирует на такие перепады, и если температура превышает норму – отключается. Чаще всего такие системы устанавливают для уличного освещения.

Лампы холодного излучения часто встречаются в электронных устройствах. CCFLs (с холодным катодом люминесцентные лампы) используются как диодные лампочки для компьютеров, модемов, мультиметров, газоразрядных индикаторов ин-14, ин 18 и нв 3, и прочего. Кроме того, они широко применяются в качестве ЖК-подсветки. Еще одним примером широкого использования является трубы Nixie.

Виды газоразрядных ламп

Перед тем, как купить какое-либо устройство, нужно обязательно изучить все его характеристики.

Разрядные лампы высокого давления


Фото: ртутная лампа

Лампы низкого давления

Эти лампы содержат газ внутри трубы, находящийся в более низком давлении, чем атмосферное. Классические люминесцентные лампы way относятся к этой категории, хорошо известные сейчас неоновые лампы, а также натриевые лампы низкого давления, которые используются для уличного освещения. Все они имеют очень хорошую эффективность, но наиболее эффективными среди всех газоразрядных ламп являются натриевые лампы son. Проблема этого типа ламп (с цоколем r7s) является то, что она производит только почти монохроматический желтый свет (исключение – бездроссельные люминесцентные лампы).


Лампы высоко-интенсивного разряда

В этой категории, находятся лампы, которые излучают свет при помощи электрической дуги между электродами (е-27). Электроды обычно представлены вольфрамовыми электродами, которые находится внутри полупрозрачного или прозрачного материала. Есть много различных примеров HID (High Intensity) ламп, продажа которых осуществляется у нас в стране, таких как галогеновые (ipf h4 х-41, мн-кх7s-150вт, hq-т), ксеноновые дуговые, и светильники сверхвысокой производительности (UHP).

Минусы в работе разрядных ламп

Любые устройства имеют свои недостатки, и газоразрядные светильники не стали исключением:

  • если напряжение сети меньше, чем 220 В (допустим, 100), то металогалогенные лампы (hmi-1200), не будут работать;
  • запрет на использование в учебных заведениях;
  • галогеновые лампы во время работы становятся слишком горячими. Они представляют определенную пожароопасность, и кроме того требуют очень щепетильного ухода – 1 капелька жира на поверхности может заставить её взорваться;
  • неоновые лампы излучают свет (особенно, если серия УФ, модель н4), который вреден для глаз при долгом контакте.

Область применения

Широкое применение получили автомобильные газоразрядные лампы высокой интенсивности – и неоновые, также для авто иногда применяется диодное освещение (их цена несколько ниже). Разряд автомобильной фары заполнен смесью газообразного ксенона и металло-галоидных солей (как например использует Тойота Королла – d2r для toyota estima 2000, или БМВ 5, для Опеля astra j)). Света создается путем удара дуги между двумя электродами. Лампа имеет встроенный воспламенитель.


Для освещения промышленных помещений (гу-23а, лд30, тн-0, 3, гу26а), уличных площадей (olympiad 250, Сильвиана производства Украина), билбордов, фасадов зданий, также газоразрядные лампы высокого давления дневного света в квартирах и домах (гост 500-9006-083) и в ПРА.

Монтаж и схема подключения точно такие же, как и при установке простых ламп накаливания.

Области применения

Благодаря линейчатому спектру излучения газоразрядные лампы первоначально применялись лишь в специальных случаях, когда получение заданного спектрального состава излучения являлось фактором более важным, чем значение световой отдачи. Возникла широкая номенклатура , предназначенных для применения в научно-исследовательской аппаратуре, которые объединяют под одним общим названием - спектральные лампы.

Рисунок 1. Спектральные лампы с парами натрия и магния

Возможность создания интенсивного ультрафиолетового излучения, отличающегося высокими химической активностью и биологическим действием, привела к использованию газоразрядных ламп в химической и полиграфической промышленности, а также в медицине.

Короткая дуга в газе или парах металла при сверхвысоком давлении отличается высокой яркостью, что позволило в настоящее время отказаться от открытой угольной дуги в прожекторной технике.

Применение люминофоров, позволившее получать газоразрядные лампы с непрерывным спектром излучения в видимой области, определило возможность внедрения газоразрядных ламп в осветительные установки и вытеснение из ряда областей ламп накаливания.

Особенности изотермической плазмы, обеспечивающей получение спектра излучения, близкого к излучению тепловых источников, при температурах, недоступных в лампах накаливания, привели к разработке сверхмощных осветительных ламп со спектром, практически совпадающим с солнечным.

Практическая безынерционность газового разряда позволила применить газоразрядные лампы в фототелеграфе и вычислительной технике, а также создать импульсные лампы, концентрирующие в кратковременном световом импульсе огромную световую энергию.

Видео 1. Импульсные лампы

Требования снижения расхода электроэнергии во всех областях народного хозяйства расширяют применение экономичных газоразрядных ламп, объем выпуска которых непрерывно растет.

Лампы тлеющего разряда

Как известно, нормальный тлеющий разряд возникает при малых плотностях тока. Если при этом расстояние между катодом и анодом настолько мало, что в его пределах не может разместиться столб разряда, то имеют место катодное свечение и отрицательное тлеющее свечение, покрывающие поверхность катода. Расход мощности в лампе тлеющего разряда весьма мал, так как мал ток, а напряжение определяется лишь катодным падением. Излучаемый лампой световой поток незначителен, однако совершенно достаточен для того, чтобы зажигание лампы было заметным, особенно если разряд происходит в газе, дающем цветное излучение, например в неоне (длина волны 600 нм, красный цвет излучения). Такие лампы различной конструкции широко используют в качестве индикаторов. Так называемые цифровые лампы являлись ранее составной частью многих автоматических устройств с цифровыми указателями.

Рисунок 3. Лампа тлеющего разряда предназначенная для индикации цифр

При длинном газоразрядном промежутке с расстоянием между электродами значительно большим, чем прикатодная область, основное излучение разряда сосредотачивается в столбе разряда, который при тлеющем разряде отличается от столба при дуговом разряде лишь меньшей плотностью тока. Излучение такого столба может иметь высокую световую отдачу при большой длине. Высокое значение катодного падения напряжения в тлеющем разряде обусловило разработку ламп на высокое напряжение питания, то есть напряжение на них значительно превосходит напряжение, считающееся безопасным по условиям работы в закрытых помещениях, особенно бытовых. Однако такие лампы с успехом применяют для различного рода рекламных и сигнальных установок.

Рисунок 4. Лампы с длинным столбом тлеющего разряда

Преимуществом лампы тлеющего разряда является простота конструкции катода по сравнению с катодом лампы дугового разряда. Кроме того, тлеющий разряд менее чувствителен к наличию случайных примесей в газоразрядном пространстве, а следовательно, более долговечен.

Лампы дугового разряда

Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 10 4 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 10 6 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.

При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.

Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.

После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.

Рисунок 5. Трубчатая газоразрядная лампа низкого давления

Рисунок 6. Газоразрядная лампа высокого давления

Рисунок 7. Газоразрядная лампа сверхвысокого давления

Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.

Классификация ламп

Аналогично лампам накаливания газоразрядные лампы отличаются между собой областью применения, видом разряда, давлением и видом наполняющего газа или паров металла, использованием люминофора. Если смотреть глазами изготовителей газоразрядных ламп то они могут также отличаться особенностями конструкций, важнейшими из которых являются форма и размеры колбы (газоразрядного промежутка), используемый материал из которого изготавливается колба, материал и конструкция электродов, конструкция цоколей и выводов.

При классификации газоразрядных ламп могут возникнуть некоторые затруднения связанные с многообразием признаков, на основе которых они могут быть классифицированы. В связи с этим для классификации принятой в настоящее время и используемой в качестве основы системы обозначений газоразрядных ламп, определен ограниченный ряд признаков. Стоит отметить, что для ртутных трубчатых низкого давления, являющихся наиболее массовыми газоразрядными лампами, существует своя система обозначений.

Итак, для обозначения газоразрядных ламп пользуются следующими основными признаками:

  1. рабочее давление (лампы сверхвысокого давления – более 10 6 Па, высокого давления – от 3 × 10 4 до 10 6 Па и низкого давления – от 0,1 до 10 4 Па);
  2. состав наполнителя, в котором происходит разряд (газ, пары металла и их соединений);
  3. наименование используемого газа или пара металла (ксенон – Кс, натрий – На, ртуть – Р и тому подобные);
  4. вид разряда (импульсный – И, тлеющий – Т, дуговой – Д).

Форма колбы обозначается буквами: Т – трубчатая, Ш – шаровая; если на колбу лампы наносится люминофор то в обозначение добавляется буква Л. Лампы делятся также по: области свечения – лампы тлеющего свечения и лампы со столбом разряда; по способу охлаждения – на лампы с принудительным и естественным воздушным охлаждением, лампы с водяным охлаждением.

Ртутные трубчатые люминесцентные лампы низкого давления принято обозначать проще. Например, в их обозначении первая буква Л говорит о том, что лампа принадлежит к данному виду источников света, последующие буквы – а их может быть одна, две или даже три, обозначают цветность излучения. Цветность является важнейшим параметром обозначения, так как цветность определяет область использования лампы.

Классификация газоразрядных ламп может также вестись по их значимости в области техники освещения: дуговые лампы высокого давления с исправленной цветностью; дуговые трубчатые лампы высокого давления; дуговые высокого давления; дуговые натриевые лампы низкого и высокого давления; дуговые высокого давления; дуговые шаровые сверхвысокого давления; дуговые ксеноновые трубчатые и шаровые лампы; люминесцентные лампы низкого давления; электродосветные, импульсные и другие виды специальных газоразрядных ламп.