Уравнение напряженности электрического поля. Элементарный заряд

Напряженность электрического поля может иметь значительную важность при использовании конденсаторов, а также иных деталей для схем. Почему так? Давайте рассмотрим данное понятие с точки зрения физики.

Зачем было введено само понятие напряженности электрического поля

Оно характеризирует особый вид материи, которая существует около любого электрического заряда и проявляет себя во влиянии на другие подобные частицы. Напряженность - это характеристика данного поля. Принимать во внимание данное понятие необходимо из-за того, что существует влияние на электронные компоненты любой схемы, которая есть в любой электротехнике. А при игнорировании этого аспекта машины, в которых они есть, будут очень быстро выходить из строя, возможно даже, что мгновенно - при первом же запуске. Как напряженность электрического поля рассматривается современной наукой?

Что такое напряженность с точки зрения физики

Данному понятию было уделено много внимания - ещё бы, ведь от понимания данных процессов сейчас очень сильно зависит мощь нашей цивилизации. Под ней понимают векторную величину, которую используют, чтобы охарактеризовать электрическое поле в одной точке. Она численно равняется отношению силы, что воздействует на недвижимый точечный заряд, который рассматривается, к его величине:

Н=С/ВЗ, где:

  1. Н - напряженность.
  2. С - сила.
  3. ВЗ - величина заряда, что рассматривается.

Вот как определить напряженность электрического поля. И вот почему её могут иногда называть его же силовой характеристикой. Что же выступает единственным отличием? От вектора силы, который действует на заряженную частицу, данный случай отличается наличием постоянного множителя. А что можно сказать про его величину?

Значение вектора в каждой точке пространства

Необходимо учитывать, что данная величина меняется вместе с изменением координат. Формально все точки векторного объема можно выразить такой записью: Е = Е (х, у, z, t). Она представляет напряженность электрического поля в виде функции пространственных координат. А теперь на них необходимо наложить векторы магнитной индукции. В результате можно получить электромагнитное поле, которое вместе со своими законами будет представлять предмет электродинамики. В чем измеряется напряженность данного объекта? Для этого используют показатель вольт на метр или ньютон на кулон (запись соответственно В/м или Н/Кл).

Напряжённость электрического поля в классической электродинамике

Она признана одной из основных фундаментальных величин. Сопоставимыми по важности можно назвать вектор магнитной индукции и электрический заряд. В некоторых случаях подобную значительность могут приобретать потенциалы электромагнитного поля. Более того, если соединить их вместе, то можно получить значение, которое покажет возможность влияния на другие объекты. Оно называется электромагнитным потенциалом. Существуют и другие понятия. Электрический ток, его плотность, вектор поляризации, напряженность магнитного поля - все они достаточно значимые и важные, но считаются только вспомогательными величинами. Давайте устроим краткий обзор основных контекстов, которые имеются в классической электродинамике относительно напряженности электрического поля.

Сила действия на заряженные частицы

Для выражения общего показателя воздействия магнитного поля использую формулу Лоренца:

С = ЭЗЧ*ВС+ЭЗЧ*Ск*^ВМИ.

С - сила воздействия магнитного поля на заряженную частицу.

ЭЗЧ - электрический заряд одной частицы.

ВМИ - вектор магнитной индукции.

Ск - скорость движения частицы.

*^ - векторное произведение.

Если разобраться в формуле, то можно увидеть, что она полностью согласуется с ранее данным определением, чем является напряженность электрического поля. Но само уравнение обобщено, поскольку в него включено действие на заряженную частицу со стороны магнитного поля при движении оной. Также предполагается, что объект рассмотрения является точечным. Формула позволяет рассчитывать силы, которыми действует электромагнитное поле на тело любой формы, в котором произвольное распределение зарядов и токов. Необходимо только разбить сложный объект на маленькие части, каждая из них может считаться точкой, и тогда к ней становится возможным применение формулы.

Что можно сказать про остальные подсчёты

Другие уравнения, которые применяются при расчетё электромагнитных сил, считают следствиями формулы Лоренца. Также их называют частными случаями её применения. Хотя для практического применения даже в самых простых задачах всё же необходимо иметь ещё небольшой багаж знаний, о которых сейчас и будет рассказано.

Электростатика

Занимается частными случаями, когда заряженные тела являются неподвижными, или их скорость передвижения настолько мала, что их таковыми считают. Как же посчитать напряженность электрического поля в данном случае? В этом нам поможет скалярный потенциал:

НЭП = -∆СП.

НЭП - напряженность электрического поля.

СП - скалярный потенциал.

Верно и обратное. Полученное значение называется электростатическим потенциалом. Также подобный подход упрощает уравнение Максвелла, и оно превращается в формуле Пуассона. Для частного случая областей, которые свободны от заряженных частиц, используют подсчёты по методу Лапласа. Обратите внимание - все уравнения линейные, а соответственно, к ним применяется принцип суперпозиции. Для этого следует найти поле только одного точечного единичного заряда. Затем следует обсчитать напряженность или потенциал поля, что создаются их распределением. Знаете, как называют полученный результат? Наверняка нет. А имя ему - напряженность электрического поля точечного заряда.

Уравнения Максвелла

Они вместе с формулой силы Лоренца составляют теоретический фундамент классической электродинамики. Традиционная форма представлена. Поскольку описывать каждое из них - это долго, то мною они будут представлены в виде картинки. Считается, что этих четырёх уравнений и формулы силы Лоренца достаточно, чтобы полностью описать классическую (только её, а не квантовую) электродинамику. Но что делать с практикой? Для решения реальных задач может потребоваться ещё уравнение, которое описывает движение материальных частиц (в классической механике в их роли выступают законы Ньютона). Также будет нужной информация о конкретных свойствах сред и физических тел, которые рассматриваются (их упругость, электропроводность, поляризация и подобное). Для решения задач могут применяться и другие силы, что не входят в рамки электродинамики (как то гравитация), но которые бывают нужными, чтобы построить замкнутую систему уравнений или решить конкретную проблему.

Заключение

Что же, подводя итог, можно сказать, что напряженность электрического поля была рассмотрена довольно полно, как в целом, так и некоторые частные случаи. Данных, представленных в рамках статьи, должно с лихвой хватить, чтобы рассчитывать параметры для своих будущих конструкций. Про графическое изображение можно сказать, что векторы напряженности электрического поля изображаются с помощью силовых линий, которые считаются касательными к каждой точке. Этот способ описания впервые был введён Фарадеем. На этом про напряженность электрического поля автор заканчивает и благодарит вас за уделенное внимание.

Формулы электричества и магнетизма. Изучение основ электродинамики традиционно начинается с электрического поля в вакууме. Для вычисления силы взаимодействия между двумя точными зарядами и вычисления напряженности электрического поля, созданного точечным зарядом, нужно уметь применять закон Кулона. Для вычисления напряженностей полей, созданных протяженными зарядами (заряженной нитью, плоскостью и т.д.), применяется теорема Гаусса. Для системы электрических зарядов необходимо применять принцип

При изучении темы "Постоянный ток" необходимо рассмотреть во всех формах законы Ома и Джоуля-Ленца При изучении "Магнетизма" необходимо иметь в виду, что магнитное поле порождается движущимися зарядами и действует на движущиеся заряды. Здесь следует обратить внимание на закон Био-Савара-Лапласа. Особое внимание следует обратить на силу Лоренца и рассмотреть движение заряженной частицы в магнитном поле.

Электрические и магнитные явления связаны особой формой существования материи - электромагнитным полем. Основой теории электромагнитного поля является теория Максвелла.

Таблица основных формул электричества и магнетизма

Физические законы, формулы, переменные

Формулы электричество и магнетизм

Закон Кулона:
где q 1 и q 2 - величины точечных зарядов, ԑ 1 - электрическая постоянная;
ε - диэлектрическая проницаемость изотропной среды (для вакуума ε = 1),
r - расстояние между зарядами.

Напряженность электрического поля:

где Ḟ - сила, действующая на заряд q 0 , находящийся в данной точке поля.

Напряженность поля на расстоянии r от источника поля:

1) точечного заряда

2) бесконечно длинной заряженной нити с линейной плотностью заряда τ:

3) равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда σ:

4) между двумя разноименно заряженными плоскостями

Потенциал электрического поля:

где W - потенциальная энергия заряда q 0 .

Потенциал поля точечного заряда на расстоянии r от заряда:

По принципу суперпозиции полей, напряженность:

Потенциал:

где Ē i и ϕ i - напряженность и потенциал в данной точке поля, создаваемый i-м зарядом.

Работа сил электрического поля по перемещению заряда q из точки с потенциалом ϕ 1 в точку с потенциалом ϕ 2 :

Связь между напряженностью и потенциалом

1) для неоднородного поля:

2) для однородного поля:

Электроемкость уединенного проводника:

Электроемкость конденсатора:

Электроемкость плоского конденсатора:

где S - площадь пластины (одной) конденсатора,

d - расстояние между пластинами.

Энергия заряженного конденсатора:

Сила тока:

Плотность тока:

где S - площадь поперечного сечения проводника.

Сопротивление проводника:

l - длина проводника;

S - площадь поперечного сечения.

Закон Ома

1) для однородного участка цепи:

2) в дифференциальной форме:

3) для участка цепи, содержащего ЭДС:

Где ε - ЭДС источника тока,

R и r - внешнее и внутреннее сопротивления цепи;

4) для замкнутой цепи:

Закон Джоуля-Ленца

1) для однородного участка цепи постоянного тока:
где Q - количество тепла, выделяющееся в проводнике с током,
t - время прохождения тока;

2) для участка цепи с изменяющимся со временем током:

Мощность тока:

Связь магнитной индукции и напряженности магнитного поля:

где B - вектор магнитной индукции,
μ √ магнитная проницаемость изотропной среды, (для вакуума μ = 1),
µ 0 - магнитная постоянная ,
H - напряженность магнитного поля.

Магнитная индукция (индукция магнитного поля):
1) в центре кругового тока
где R - радиус кругового тока,

2) поля бесконечно длинного прямого тока
где r - кратчайшее расстояние до оси проводника;

3) поля, созданного отрезком проводника с током
где ɑ 1 и ɑ 2 - углы между отрезком проводника и линией, соединяющей концы отрезка и точкой поля;
4) поля бесконечно длинного соленоида
где n - число витков на единицу длины соленоида.

Под электрическим напряжением понимают работу, совершаемую электрическим полем для перемещения заряда напряженностью в 1 Кл (кулон) из одной точки проводника в другую.

Как возникает напряжение?

Все вещества состоят из атомов, представляющих собой положительно заряженное ядро, вокруг которого с большой скоростью кружатся более мелкие отрицательные электроны. В общем случае атомы нейтральны, так как количество электронов совпадает с числом протонов в ядре.

Однако если некоторое количество электронов отнять из атомов, то они будут стремиться притянуть такое же их количество, формируя вокруг себя плюсовое поле. Если же добавить электронов, то возникнет их избыток, и отрицательное поле. Формируются потенциалы – положительный и отрицательный.

При их взаимодействии возникнет взаимное притяжение.

Чем больше будет величина различия – разность потенциалов – тем сильнее электроны из материала с их избыточным содержанием будут перетягиваться к материалу с их недостатком. Тем сильнее будет электрическое поле и его напряжение.

Если соединить потенциалы с различными зарядами проводников, то возникнет электрический – направленное движение носителей заряда, стремящееся устранить разницу потенциалов. Для перемещения по проводнику зарядов силы электрического поля совершают работу, которая и характеризуется понятием электрического напряжения.

В чем измеряется

Температуры;

Виды напряжения

Постоянное напряжение

Напряжение в электрической сети постоянно, когда с одной ее стороны всегда положительный потенциал, а с другой – отрицательный. Электрический в этом случае имеет одно направление и является постоянным.

Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах.

При подключении нагрузки в цепь постоянного тока важно не перепутать контакты, иначе устройство может выйти из строя. Классическим примером источника постоянного напряжения являются батарейки. Применяют сети , когда не требуется передавать энергию на большие расстояния: во всех видах транспорта – от мотоциклов до космических аппаратов, в военной технике, электроэнергетике и телекоммуникациях, при аварийном электрообеспечении, в промышленности (электролиз, выплавка в дуговых электропечах и т.д.).

Переменное напряжение

Если периодически менять полярность потенциалов, либо перемещать их в пространстве, то и электрический устремится в обратном направлении. Количество таких изменений направления за определенное время показывает характеристика, называемая частотой. Например, стандартные 50 означают, что полярность напряжения в сети меняется за секунду 50 раз.


Напряжение в электрических сетях переменного тока является временной функцией.

Чаще всего используется закон синусоидальных колебаний.

Так получается за счет того, что возникает в катушке асинхронных двигателей за счет вращения вокруг нее электромагнита. Если развернуть вращение по времени, то получается синусоида.

Состоит из четырех проводов – трех фазных и одного нулевого. напряжение между проводами нулевым и фазным равно 220 В и называется фазным. Между фазными напряжение также существует, называется линейным и равно 380 В (разность потенциалов между двумя фазными проводами). В зависимости от вида подключения в трехфазной сети можно получить или фазное напряжение, или линейное.

напряжённость электри́ческого по́ля

(Е ), основная силовая характеристика электрического поля, равная отношению силы, действующей на точечный электрический заряд в данной точке пространства, к величине заряда.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

НАПРЯЖЕННОСТЬ ЭЛЕКТРИ́ЧЕСКОГО ПО́ЛЯ (Е ), основная силовая характеристика электрического поля (см. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ) , определяемая силой (F), действующей на точечный (единичный) положительный электрический заряд (см. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД) (Q o), помещенный в данную точку поля. Заряд должен быть малым, чтобы не изменять ни величины, ни расположения тех зарядов, которые порождают исследуемое поле (т. е. заряд, не искажающий поля, которое с его помощью изучается, при этом собственным электрическим полем точечного заряда пренебрегают).
Е = F/ Q o .
В общем случае напряженность поля Е = F/Q. Т.е. напряженность в данной точке пространства есть отношение силы, действующей на заряд, помещенный в эту точку к величине этого заряда.
Единица измерения напряженности электростатического поля - 1Н/Кл =1В/м.
Напряженность 1Н/Кл - это напряженность такого поля, которое на точечный заряд 1 Кл действует силой 1 Н, эту единицу в системе СИ называют В/м.
Напряженность электрического поля - векторная величина. Направление вектора напряженности Е совпадает с направлением кулоновской (см. Кулона закон (см. КУЛОНА ЗАКОН) ) силы, действующей на точечный положительный заряд, помещенный в данную точку поля.
Если поле создается положительным зарядом, то вектор напряженности такого поля направлен от заряда вдоль радиуса-вектора, если поле создается отрицательным зарядом, то вектор напряженности поля Е направлен к заряду.
Графической характеристикой поля являются силовые линии (см. СИЛОВЫЕ ЛИНИИ) напряженности электрического поля, касательные к которым в каждой точке совпадают с направлением вектора напряженности.
Для электростатического поля напряженность электрического поля может быть представлена как градиент (см. ГРАДИЕНТ) электрического потенциала (см. ПОТЕНЦИАЛ (в физике)) j;
Е = - gradj.
Вектор напряженности электрического поля направлен в сторону убывания потенциала.
В вакууме напряженность электрического поля удовлетворяет принципу суперпозиции, согласно которому полная напряженность поля в точке равна геометрической сумме напряженностей полей, создаваемых отдельными заряженными частицами.


Энциклопедический словарь . 2009 .

Смотреть что такое "напряжённость электрического поля" в других словарях:

    Размерность LMT−3I−1 Единицы измерения СИ В/м Примечан … Википедия

    - (E), векторная характеристика электрического поля, равная отношению силы, действующей на точечный электрический заряд в данной точке пространства, к величине заряда. В СИ измеряется в В/м … Современная энциклопедия

    напряжённость электрического поля - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN intensity of electric fieldelectric field intensitystrength of… …

    Напряжённость электрического поля - Напряженность электрического поля НАПРЯЖЁННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ (E), векторная характеристика электрического поля, равная отношению силы, действующей на точечный электрический заряд в данной точке пространства, к величине заряда. В СИ… … Иллюстрированный энциклопедический словарь

    напряжённость электрического поля - elektrinio lauko stipris statusas T sritis automatika atitikmenys: angl. electric field intensity; electric field strength vok. elektrische Feldstärke, f rus. напряжённость электрического поля, f pranc. intensité du champ électrique, f … Automatikos terminų žodynas

    напряжённость электрического поля - elektrinio lauko stipris statusas T sritis fizika atitikmenys: angl. electric field strength vok. elektrische Feldstärke, f rus. напряжённость электрического поля, f pranc. intensité du champ électrique, f … Fizikos terminų žodynas - (t), векторная величина, осн. силовая характеристика электрич. поля, равная отношению силы, действующей to точечный электрич. заряд в данной точке пространства, к величине заряда. Единица СИ В/м … Естествознание. Энциклопедический словарь

    пробивная напряжённость электрического поля - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN disruptive electric strengthdisruptive electric field strength … Справочник технического переводчика

Прежде чем выяснять, как определить напряженность электрического поля, нужно обязательно понять суть этого явления.

Свойства электрического поля

В создании электрического поля участвуют подвижные и неподвижные заряды. Наличие поля проявляется в его силовом воздействии на них. Кроме того, поле способно создавать индукцию зарядов, находящихся на поверхности проводников. Когда поле создается с помощью неподвижных зарядов, его считают стационарным электрическим полем. Другое название - электростатическое поле. Является одной из разновидностей электромагнитного поля, с помощью которого происходят все силовые взаимодействия, возникающие между заряженными частицами.

В чем измеряется напряженность электрического поля

Напряженность - есть векторная величина, оказывающая силовое воздействие на заряженные частицы. Величина определяется как отношение силы, направленной с его стороны, к величине точечного пробного электрозаряда в конкретной точке этого поля. Пробный электрозаряд вносится в электрополе специально, чтобы можно было рассчитать напряженность.

Кроме теории, существуют практические способы, как определить напряженность электрического поля:

  1. В произвольном электрическом поле, необходимо взять тело, содержащее электрозаряд. Размеры этого тела должны быть меньше, чем размеры тела, с помощью которого генерируется электрическое поле. Для этой цели можно использовать небольшой металлический шарик с электрозарядом. Необходимо измерить заряд шарика с помощью электрометра и поместить в поле. Действующую на шарик силу необходимо уравновесить динамометром. После этого с динамометра снимаются показания, выраженные в ньютонах. Если значение силы разделить на величину заряда, то получится значение напряженности, выраженное в вольт/метр.
  2. Напряженность поля в определенной точке, удаленной от заряда на какую-либо длину, вначале определяется измерением расстояния между ними. Затем, величина делится на полученное расстояние, возведенное в квадрат. К полученному результату применяется коэффициент 9*10^9.
  3. В конденсаторе определение напряженности начинается с измерения напряжения между его пластинами с помощью вольтметра. Далее, необходимо измерить расстояние между пластинами. Значение в вольтах делится на расстояние между пластинами в метрах. Полученный результат и будет значением напряженности электрического поля.