Разложение на множители больших чисел. Разложение многочлена на множители

Разложение многочленов на множители – это тождественное преобразование, в результате которого многочлен преобразуется в произведение нескольких сомножителей – многочленов или одночленов.

Существует несколько способов разложения многочленов на множители.

Способ 1. Вынесение общего множителя за скобку.

Это преобразование основывается на распределительном законе умножения: ac + bc = c(a + b). Суть преобразования заключается в том, чтобы выделить в двух рассматриваемых компонентах общий множитель и «вынести» его за скобки.

Разложим на множители многочлен 28х 3 – 35х 4 .

Решение.

1. Находим у элементов 28х 3 и 35х 4 общий делитель. Для 28 и 35 это будет 7; для х 3 и х 4 – х 3 . Иными словами, наш общий множитель 7х 3 .

2. Каждый из элементов представляем в виде произведения множителей, один из которых
7х 3: 28х 3 – 35х 4 = 7х 3 ∙ 4 – 7х 3 ∙ 5х.

3. Выносим за скобки общий множитель
7х 3: 28х 3 – 35х 4 = 7х 3 ∙ 4 – 7х 3 ∙ 5х = 7х 3 (4 – 5х).

Способ 2. Использование формул сокращенного умножения. «Мастерство» владением этим способом состоит в том, чтобы заметить в выражении одну из формул сокращенного умножения.

Разложим на множители многочлен х 6 – 1.

Решение.

1. К данному выражению мы можем применить формулу разности квадратов. Для этого представим х 6 как (х 3) 2 , а 1 как 1 2 , т.е. 1. Выражение примет вид:
(х 3) 2 – 1 = (х 3 + 1) ∙ (х 3 – 1).

2. К полученному выражению мы можем применить формулу суммы и разности кубов:
(х 3 + 1) ∙ (х 3 – 1) = (х + 1) ∙ (х 2 – х + 1) ∙ (х – 1) ∙ (х 2 + х + 1).

Итак,
х 6 – 1 = (х 3) 2 – 1 = (х 3 + 1) ∙ (х 3 – 1) = (х + 1) ∙ (х 2 – х + 1) ∙ (х – 1) ∙ (х 2 + х + 1).

Способ 3. Группировка. Способ группировки заключается в объединение компонентов многочлена таким образом, чтобы над ними было легко совершать действия (сложение, вычитание, вынесение общего множителя).

Разложим на множители многочлен х 3 – 3х 2 + 5х – 15.

Решение.

1. Сгруппируем компоненты таким образом: 1-ый со 2-ым, а 3-ий с 4-ым
(х 3 – 3х 2) + (5х – 15).

2. В получившемся выражении вынесем общие множители за скобки: х 2 в первом случае и 5 – во втором.
(х 3 – 3х 2) + (5х – 15) = х 2 (х – 3) + 5(х – 3).

3. Выносим за скобки общий множитель х – 3 и получаем:
х 2 (х – 3) + 5(х – 3) = (х – 3)(х 2 + 5).

Итак,
х 3 – 3х 2 + 5х – 15 = (х 3 – 3х 2) + (5х – 15) = х 2 (х – 3) + 5(х – 3) = (х – 3) ∙ (х 2 + 5).

Закрепим материал.

Разложить на множители многочлен a 2 – 7ab + 12b 2 .

Решение.

1. Представим одночлен 7ab в виде суммы 3ab + 4ab. Выражение примет вид:
a 2 – (3ab + 4ab) + 12b 2 .

Раскроем скобки и получим:
a 2 – 3ab – 4ab + 12b 2 .

2. Сгруппируем компоненты многочлена таким образом: 1-ый со 2-ым и 3-ий с 4-ым. Получим:
(a 2 – 3ab) – (4ab – 12b 2).

3. Вынесем за скобки общие множители:
(a 2 – 3ab) – (4ab – 12b 2) = а(а – 3b) – 4b(а – 3b).

4. Вынесем за скобки общий множитель (а – 3b):
а(а – 3b) – 4b(а – 3b) = (а – 3 b) ∙ (а – 4b).

Итак,
a 2 – 7ab + 12b 2 =
= a 2 – (3ab + 4ab) + 12b 2 =
= a 2 – 3ab – 4ab + 12b 2 =
= (a 2 – 3ab) – (4ab – 12b 2) =
= а(а – 3b) – 4b(а – 3b) =
= (а – 3 b) ∙ (а – 4b).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Рассмотрим на конкретных примерах, как разложить многочлен на множители.

Разложение многочленов будем проводить в соответствии с .

Разложить многочлены на множители:

Проверяем, нет ли общего множителя. есть, он равен 7cd. Выносим его за скобки:

Выражение в скобках состоит из двух слагаемых. Общего множителя уже нет, формулой суммы кубов выражение не является, значит, разложение завершено.

Проверяем, нет ли общего множителя. Нет. Многочлен состоит из трех слагаемых, поэтому проверяем, нет ли формулы полного квадрата. Два слагаемых являются квадратами выражений: 25x²=(5x)², 9y²=(3y)², третье слагаемое равно удвоенному произведению этих выражений:2∙5x∙3y=30xy. Значит, данный многочлен является полным квадратом. Так как удвоенное произведение со знаком «минус», то это — :

Проверяем, нельзя ли вынести общий множитель за скобки. Общий множитель есть, он равен a. Выносим его за скобки:

В скобках — два слагаемых. Проверяем, нет ли формулы разности квадратов или разности кубов. a² — квадрат a, 1=1². Значит, выражение в скобках можно расписать по формуле разности квадратов:

Общий множитель есть, он равен 5. Выносим его за скобки:

в скобках — три слагаемых. Проверяем, не является ли выражение полным квадратом. Два слагаемых — квадраты: 16=4² и a² — квадрат a, третье слагаемое равно удвоенному произведению 4 и a: 2∙4∙a=8a. Следовательно, это — полный квадрат. Так как все слагаемые со знаком «+», выражение в скобках является полным квадратом суммы:

Общий множитель -2x выносим за скобки:

В скобках — сумма двух слагаемых. Проверяем, не является ли данное выражение суммой кубов. 64=4³, x³- куб x. Значит, двучлен можно разложить по формуле :

Общий множитель есть. Но, поскольку многочлен состоит из 4 членов, мы будем сначала , а уже потом выносить за скобки общий множитель. Сгруппируем первое слагаемое с четвертым, в второе — с третьим:

Из первых скобок выносим общий множитель 4a, из вторых — 8b:

Общего множителя пока нет. Чтобы его получить, из вторых скобок вынесем за скобки «-«, при этом каждый знак в скобках изменится на противоположный:

Теперь общий множитель (1-3a) вынесем за скобки:

Во вторых скобках есть общий множитель 4 (этот тот самый множитель, который мы не стали выносить за скобки в начале примера):

Поскольку многочлен состоит из четырех слагаемых, выполняем группировку. Сгруппируем первое слагаемое со вторым, третье — с четвертым:

В первых скобках общего множителя нет, но есть формула разности квадратов, во вторых скобках общий множитель -5:

Появился общий множитель (4m-3n). Выносим его за скобки.

Что такое разложение на множители? Это способ превращения неудобного и сложного примера в простой и симпатичный.) Оч-ч-чень мощный приём! Встречается на каждом шагу и в элементарной математике, и в высшей.

Подобные превращения на математическом языке называются тождественными преобразованиями выражений. Кто не в теме - прогуляйтесь по ссылке. Там совсем немного, просто и полезно.) Смысл любого тождественного преобразования - это запись выражения в другом виде с сохранением его сути.

Смысл разложения на множители предельно прост и понятен. Прямо из самого названия. Можно забыть (или не знать), что такое множитель, но то, что это слово происходит от слова "умножить" сообразить-то можно?) Разложить на множители означает: представить выражение в виде умножения чего-то на чего-то. Да простят мне математика и русский язык...) И всё.

Например, надо разложить число 12. Можно смело записать:

Вот мы и представили число 12 в виде умножения 3 на 4. Прошу заметить, что циферки справа (3 и 4) совсем другие, чем слева (1 и 2). Но мы прекрасно понимаем, что 12 и 3·4 одно и то же. Суть числа 12 от преобразования не изменилась.

А можно разложить 12 по-другому? Легко!

12=3·4=2·6=3·2·2=0,5·24=........

Вариантов разложения - бесконечное количество.

Разложение чисел на множители - штука полезная. Очень помогает, например, при действиях с корнями. Но разложение на множители алгебраических выражений вещь не то, что полезная, она - необходимая! Чисто для примера:

Упростить:

Кто не умеете раскладывать выражение на множители, отдыхает в сторонке. Кто умеет - упрощает и получает:

Эффект потрясающий, правда?) Кстати, решение достаточно простое. Ниже сами увидите. Или, например, такое задание:

Решить уравнение:

х 5 - x 4 = 0

Решается в уме, между прочим. С помощью разложения на множители. Ниже мы решим этот пример. Ответ: x 1 = 0; x 2 = 1 .

Или, то же самое, но для старшеньких):

Решить уравнение:

На этих примерах я показал основное назначение разложения на множители: упрощение дробных выражений и решение некоторых типов уравнений. Рекомендую запомнить практическое правило:

Если перед нами страшное дробное выражение, можно попробовать разложить на множители числитель и знаменатель. Очень часто дробь сокращается и упрощается.

Если перед нами уравнение, где справа - ноль, а слева - не пойми что, можно попробовать разложить левую часть на множители. Иногда помогает).

Основные способы разложения на множители.

Вот они, самые популярные способы:

4. Разложение квадратного трёхчлена.

Эти способы надо запомнить. Именно в таком порядке. Сложные примеры проверяются на все возможные способы разложения. И лучше уж проверять по порядочку, чтобы не запутаться... Вот по порядочку и начнём.)

1. Вынесение общего множителя за скобки.

Простой и надёжный способ. От него плохо не бывает! Бывает либо хорошо, либо никак.) Поэтому он и стоит первым. Разбираемся.

Все знают (я верю!)) правило:

a(b+c) = ab+ac

Или, в более общем виде:

a(b+c+d+.....) = ab+ac+ad+....

Все равенства работают как слева направо, так и наоборот, справа налево. Можно записать:

ab+ac = a(b+c)

ab+ac+ad+.... = a(b+c+d+.....)

Вот и вся суть вынесения общего множителя за скобки.

В левой части а - общий множитель для всех слагаемых. Умножается на всё, что есть). Справа это самое а находится уже за скобками.

Практическое применение способа рассмотрим на примерах. Сначала вариант простой, даже примитивный.) Но на этом варианте я отмечу (зелёным цветом) очень важные моменты для любого разложения на множители.

Разложить на множители:

ах+9х

Какой общий множитель сидит в обоих слагаемых? Икс, разумеется! Его и будем выносить за скобки. Делаем так. Сразу пишем икс за скобками:

ах+9х=х(

А в скобках пишем результат деления каждого слагаемого на этот самый икс. По порядочку:

Вот и всё. Конечно, так подробно расписывать не нужно, Это в уме делается. Но понимать, что к чему, желательно). Фиксируем в памяти:

Пишем общий множитель за скобками. В скобках записываем результаты деления всех слагаемых на этот самый общий множитель. По порядочку.

Вот мы и разложили выражение ах+9х на множители. Превратили его в умножение икса на (а+9). Замечу, что в исходном выражении тоже было умножение, даже два: а·х и 9·х. Но оно не было разложено на множители! Потому, что кроме умножения, в этом выражении было ещё и сложение, знак "+"! А в выражении х(а+9) кроме умножения ничего нет!

Как так!? - слышу возмущённый глас народа - А в скобках!?)

Да, внутри скобок есть сложение. Но фишка в том, что пока скобки не раскрыты, мы рассматриваем их как одну букву. И все действия со скобками делаем целиком, как с одной буквой. В этом смысле в выражении х(а+9) кроме умножения ничего нет. В этом вся суть разложения на множители.

Кстати, можно ли как-то проверить, всё ли правильно мы сделали? Запросто! Достаточно обратно умножить то, что вынесли (икс) на скобки и посмотреть - получилось ли исходное выражение? Если получилось, всё тип-топ!)

х(а+9)=ах+9х

Получилось.)

В этом примитивном примере проблем нет. Но если слагаемых несколько, да ещё с разными знаками... Короче, каждый третий ученик косячит). Посему:

При необходимости проверяем разложение на множители обратным умножением.

Разложить на множители:

3ах+9х

Ищем общий множитель. Ну, с иксом всё ясно, его можно вынести. А есть ли ещё общий множитель? Да! Это тройка. Можно же записать выражение вот так:

3ах+3·3х

Здесь сразу видно, что общий множителем будет . Вот его и выносим:

3ах+3·3х=3х(а+3)

Разложили.

А что будет, если вынести только х? Да ничего особенного:

3ах+9х=х(3а+9)

Это тоже будет разложение на множители. Но в этом увлекательном процессе принято раскладывать всё до упора, пока есть возможность. Здесь в скобках есть возможность вынести тройку. Получится:

3ах+9х=х(3а+9)=3х(а+3)

То же самое, только с одним лишним действием.) Запоминаем:

При вынесении общего множителя за скобки, стараемся вынести максимальный общий множитель.

Продолжаем развлечение?)

Разложить на множители выражение:

3ах+9х-8а-24

Что будем выносить? Тройку, икс? Не-е-е... Нельзя. Напоминаю, выносить можно только общий множитель, который есть во всех слагаемых выражения. На то он и общий. Здесь такого множителя нету... Что, можно не раскладывать!? Ну да, обрадовались, как же... Знакомьтесь:

2. Группировка.

Собственно, группировку трудно назвать самостоятельным способом разложения на множители. Это, скорее, способ выкрутиться в сложном примере.) Надо сгруппировать слагаемые так, чтобы всё получилось. Это только на примере показать можно. Итак, перед нами выражение:

3ах+9х-8а-24

Видно, что какие-то общие буквы и числа имеются. Но... Общего множителя, чтобы был во всех слагаемых - нет. Не падаем духом и разбиваем выражение на кусочки. Группируем. Так, чтобы в каждом кусочке был общий множитель, было чего вынести. Как разбиваем? Да просто ставим скобки.

Напомню, что скобки можно ставить где угодно и как угодно. Лишь бы суть примера не менялась. Например, можно так:

3ах+9х-8а-24 =(3ах+9х)-(8а+24 )

Прошу обратить внимание на вторые скобки! Перед ними стоит знак минус, а и 24 стали положительными! Если, для проверки, обратно раскрыть скобки, знаки поменяются, и мы получим исходное выражение. Т.е. суть выражения от скобок не изменилась.

Но если вы просто воткнули скобки, не учитывая смену знака, например, вот так:

3ах+9х-8а-24 =(3ах+9х)-(8а-24 )

это будет ошибкой. Справа - уже другое выражение. Раскройте скобки и всё станет видно. Дальше можно не решать, да...)

Но возвращаемся к разложению на множители. Смотрим на первые скобки (3ах+9х) и соображаем, можно ли чего вынести? Ну, этот пример мы выше решали, можно вынести 3х:

(3ах+9х)=3х(а+3)

Изучаем вторые скобки, там можно вынести восьмёрку:

(8а+24)=8(а+3)

Всё наше выражение получится:

(3ах+9х)-(8а+24)=3х(а+3)-8(а+3)

Разложили на множители? Нет. В результате разложения должно получиться только умножение, а у нас знак минус всё портит. Но... В обоих слагаемых есть общий множитель! Это (а+3) . Я не зря говорил, что скобки целиком - это, как бы, одна буква. Значит, эти скобки можно вынести за скобки. Да, именно так и звучит.)

Делаем, как было рассказано выше. Пишем общий множитель (а+3) , во вторых скобках записываем результаты деления слагаемых на (а+3) :

3х(а+3)-8(а+3)=(а+3)(3х-8)

Всё! Справа кроме умножения ничего нет! Значит, разложение на множители завершено успешно!) Вот оно:

3ах+9х-8а-24=(а+3)(3х-8)

Повторим кратенько суть группировки.

Если в выражении нет общего множителя для всех слагаемых, разбиваем выражение скобками так, чтобы внутри скобок общий множитель был. Выносим его и смотрим, что получилось. Если повезло, и в скобках остались совершенно одинаковые выражения, выносим эти скобки за скобки.

Добавлю, что группировка - процесс творческий). Не всегда с первого раза получается. Ничего страшного. Иногда приходится менять слагаемые местами, рассматривать разные варианты группировки, пока не найдётся удачный. Главное здесь - не падать духом!)

Примеры.

Сейчас, обогатившись знаниями, можно и хитрые примеры порешать.) Была в начале урока тройка таких...

Упростить:

В сущности, этот пример мы уже решили. Незаметно для себя.) Напоминаю: если нам дана страшная дробь, пробуем разложить числитель и знаменатель на множители. Других вариантов упрощения просто нет.

Ну, знаменатель здесь не раскладывается, а числитель... Числитель мы уже разложили по ходу урока! Вот так:

3ах+9х-8а-24=(а+3)(3х-8)

Пишем результат разложения в числитель дроби:

По правилу сокращения дробей (основное свойство дроби), мы можем разделить (одновременно!) числитель и знаменатель на одно и то же число, или выражение. Дробь от этого не меняется. Вот и делим числитель и знаменатель на выражение (3х-8) . И там и там получим единички. Окончательный результат упрощения:

Особо подчеркну: сокращение дроби возможно тогда и только тогда, когда в числителе и знаменателе кроме умножения выражений ничего нет. Именно потому превращение суммы (разности) в умножение так важно для упрощения. Конечно, если выражения разные, то и не сократится ничего. Бывет. Но разложение на множители даёт шанс. Этого шанса без разложения - просто нет.

Пример с уравнением:

Решить уравнение:

х 5 - x 4 = 0

Выносим общий множитель х 4 за скобки. Получаем:

х 4 (x-1)=0

Соображаем, что произведение множителей равно нулю тогда и только тогда, когда какой-нибудь из них равен нулю. Если сомневаетесь, найдите мне парочку ненулевых чисел, которые при умножении ноль дадут.) Вот и пишем, сначала первый множитель:

При таком равенстве второй множитель нас не волнует. Любой может быть, всё равно в итоге ноль получится. А какое число в четвёртой степени ноль даст? Только ноль! И никакое другое... Стало быть:

С первым множителем разобрались, один корень нашли. Разбираемся со вторым множителем. Теперь нас не волнует уже первый множитель.):

Вот и нашли решение: x 1 = 0; x 2 = 1 . Любой из этих корней подходит к нашему уравнению.

Очень важное замечание. Обратите внимание, мы решали уравнение по кусочкам! Каждый множитель приравнивали к нулю, не обращая внимания на остальные множители. Кстати, если в подобном уравнении будет не два множителя, как у нас, а три, пять, сколько угодно - решать будем точно так же. По кусочкам. Например:

(х-1)(х+5)(х-3)(х+2)=0

Тот, кто раскроет скобки, перемножит всё, тот навсегда зависнет на этом уравнении.) Правильный ученик сразу увидит, что слева кроме умножения ничего нет, справа - ноль. И начнёт (в уме!) приравнивать к нулю все скобочки по порядочку. И получит (за 10 секунд!) верное решение: x 1 = 1; x 2 = -5; x 3 = 3; x 4 = -2.

Здорово, правда?) Такое элегантное решение возможно, если левая часть уравнения разложена на множители. Намёк понятен?)

Ну и, последний пример, для старшеньких):

Решить уравнение:

Чем-то он похож на предыдущий, не находите?) Конечно. Самое время вспомнить, что в алгебре седьмого класса под буквами могут скрываться и синусы, и логарифмы, и всё, что угодно! Разложение на множители работает во всей математике.

Выносим общий множитель lg 4 x за скобки. Получаем:

lg 4 x=0

Это один корень. Разбираемся со вторым множителем.

Вот и окончательный ответ: x 1 = 1; x 2 = 10 .

Надеюсь, вы осознали всю мощь разложения на множители в упрощении дробей и решении уравнений.)

В этом уроке мы познакомились с вынесением общего множителя и группировкой. Остаётся разобраться с формулами сокращённого умножения и квадратным трёхчленом.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Любой алгебраический многочлен степени n может быть представлен в виде произведения n-линейных множителей вида и постоянного числа, которое является коэффициентов многочлена при старшей ступени х, т.е.

где - являются корнями многочлена.

Корнем многочлена называют число (действительное или комплексное), обращающее многочлен в нуль. Корнями многочлена могут быть как действительные корни, так и комплексно-сопряженные корни, тогда многочлен может быть представлен в следующем виде:

Рассмотрим методы разложения многочленов степени «n» в произведение множителей первой и второй степени.

Способ №1. Метод неопределенных коэффициентов.

Коэффициенты такого преобразованного выражения определяются методом неопределенных коэффициентов. Суть метода сводится к тому, что заранее известен вид множителей, на которые разлагается данный многочлен. При использовании метода неопределённых коэффициентов справедливы следующие утверждения:

П.1. Два многочлена тождественно равны в случае, если равны их коэффициенты при одинаковых степенях х.

П.2. Любой многочлен третьей степени разлагается в произведение линейного и квадратного множителей.

П.3. Любой многочлен четвертой степени разлагается на произведение двух многочленов второй степени.

Пример 1.1. Необходимо разложить на множители кубическое выражение:

П.1. В соответствии с принятыми утверждениями для кубического выражения справедливо тождественное равенство:

П.2. Правая часть выражения может быть представлена в виде слагаемых следующим образом:

П.3. Составляем систему уравнений из условия равенства коэффициентов при соответствующих степенях кубического выражения.

Данная система уравнений может быть решена методом подбора коэффициентов (если простая академическая задача) или использованы методы решения нелинейных систем уравнений. Решая данную систему уравнений, получим, что неопределённые коэффициенты определяются следующим образом:

Таким образом, исходное выражение раскладывается на множители в следующем виде:

Данный метод может использоваться как при аналитических выкладках, так и при компьютерном программировании для автоматизации процесса поиска корня уравнения.

Способ №2. Формулы Виета

Формулы Виета - это формулы, связывающие коэффициенты алгебраических уравнений степени n и его корни. Данные формулы были неявно представлены в работах французского математика Франсуа Виета (1540 - 1603). В связи с тем, что Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем явном виде.

Для любого алгебраического многочлена степени n, который имеет n-действительных корней,

справедливы следующие соотношения, которые связывают корни многочлена с его коэффициентами:

Формулами Виета удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Пример 2.1. Рассмотрим, как связаны корни многочлена с его коэффициентами на примере кубического уравнения

В соответствии с формулами Виета взаимосвязь корней многочлена с его коэффициентами имеет следующий вид:

Аналогичные соотношения можно составить для любого полинома степени n.

Способ №3. Разложение квадратного уравнения на множители с рациональными корнями

Из последней формулы Виета следует, что корни многочлена являются делителями его свободного члена и старшего коэффициента. В связи с этим, если в условии задачи задан многочлен степени n c целыми коэффициентами

то данный многочлен имеет рациональный корень (несократимая дробь), где p - делитель свободного члена , а q – делитель старшего коэффициента . В таком случае многочлен степени n можно представить в виде (теорема Безу):

Многочлен , степень которого на 1 меньше степени начального многочлена, определяется делением многочлена степени n двучлен , например, с помощью схемы Горнера или самым простым способом - «столбиком».

Пример 3.1. Необходимо разложить многочлен на множители

П.1. В связи с тем, что коэффициент при старшем слагаемом равен единицы, то рациональные корни данного многочлена являются делителями свободного члена выражения, т.е. могут быть целыми числами . Подставляем каждое из представленных чисел в исходное выражение найдем, что корень представленного многочлена равен .

Выполним деление исходного многочлена на двучлен:

Воспользуемся схемой Горнера

В верхней строке выставляются коэффициенты исходного многочлена, при этом первая ячейка верхней строки остается пустой.

В первой ячейке второй строки записывается найденный корень (в рассматриваемом примере записывается число «2»), а следующие значения в ячейках вычисляются определенным образом и они являются коэффициентами многочлена, который получится в результате деления многочлена на двучлен. Неизвестные коэффициенты определяются следующим образом:

Во вторую ячейку второй строки переносится значение из соответствующей ячейки первой строки (в рассматриваемом примере записывается число «1»).

В третью ячейку второй строки записывается значение произведения первой ячейки на вторую ячейку второй строки плюс значение из третьей ячейки первой строки (в рассматриваемом примере 2 ∙1 -5 = -3).

В четвертую ячейку второй строки записывается значение произведения первой ячейки на третью ячейку второй строки плюс значение из четвертой ячейки первой строки (в рассматриваемом примере 2 ∙ (-3) +7 = 1).

Таким образом, исходный многочлен раскладывается на множители:

Способ №4. Использование формул сокращенного умножения

Формулы сокращенного умножения применяют для упрощения вычислений, а также разложение многочленов на множители. Формулы сокращенного умножения позволяют упростить решение отдельных задач.

Формулы, используемые для разложения на множители


В этой статье Вы найдете всю необходимую информацию, отвечающую на вопрос, как разложить число на простые множители . Сначала дано общее представление о разложении числа на простые множители, приведены примеры разложений. Дальше показана каноническая форма разложения числа на простые множители. После этого дан алгоритм разложения произвольных чисел на простые множители и приведены примеры разложения чисел с использованием этого алгоритма. Также рассмотрены альтернативные способы, позволяющие быстро раскладывать небольшие целые числа на простые множители с использованием признаков делимости и таблицы умножения.

Навигация по странице.

Что значит разложить число на простые множители?

Сначала разберемся с тем, что такое простые множители.

Понятно, раз в этом словосочетании присутствует слово «множители», то имеет место произведение каких-то чисел, а уточняющее слово «простые» означает, что каждый множитель является простым числом . Например, в произведении вида 2·7·7·23 присутствуют четыре простых множителя: 2 , 7 , 7 и 23 .

А что же значит разложить число на простые множители?

Это значит, что данное число нужно представить в виде произведения простых множителей, причем значение этого произведения должно быть равно исходному числу. В качестве примера рассмотрим произведение трех простых чисел 2 , 3 и 5 , оно равно 30 , таким образом, разложение числа 30 на простые множители имеет вид 2·3·5 . Обычно разложение числа на простые множители записывают в виде равенства, в нашем примере оно будет таким: 30=2·3·5 . Отдельно подчеркнем, что простые множители в разложении могут повторяться. Это явно иллюстрирует следующий пример: 144=2·2·2·2·3·3 . А вот представление вида 45=3·15 не является разложением на простые множители, так как число 15 – составное.

Возникает следующий вопрос: «А какие вообще числа можно разложить на простые множители»?

В поисках ответа на него, приведем следующие рассуждения. Простые числа по определению находятся среди , больших единицы. Учитывая этот факт и , можно утверждать, что произведение нескольких простых множителей является целым положительным числом, превосходящим единицу. Поэтому разложение на простые множители имеет место лишь для положительных целых чисел, которые больше 1 .

Но все ли целые числа, превосходящие единицу, раскладываются на простые множители?

Понятно, что простые целые числа разложить на простые множители нет возможности. Это объясняется тем, что простые числа имеют только два положительных делителя – единицу и самого себя, поэтому они не могут быть представлены в виде произведения двух или большего количества простых чисел. Если бы целое число z можно было бы представить в виде произведения простых чисел a и b , то понятие делимости позволило бы сделать вывод, что z делится и на a и на b , что невозможно в силу простоты числа z. Однако считают, что любое простое число само является своим разложением.

А как насчет составных чисел? Раскладываются ли составные числа на простые множители, и все ли составные числа подлежат такому разложению? Утвердительный ответ на ряд этих вопросов дает основная теорема арифметики . Основная теорема арифметики утверждает, что любое целое число a , которое больше 1 , можно разложить на произведение простых множителей p 1 , p 2 , …, p n , при этом разложение имеет вид a=p 1 ·p 2 ·…·p n , причем это разложение единственно, если не учитывать порядок следования множителей

Каноническое разложение числа на простые множители

В разложении числа простые множители могут повторяться. Повторяющиеся простые множители можно записать более компактно, используя . Пусть в разложении числа a простой множитель p 1 встречается s 1 раз, простой множитель p 2 – s 2 раз, и так далее, p n – s n раз. Тогда разложение на простые множители числа a можно записать как a=p 1 s 1 ·p 2 s 2 ·…·p n s n . Такая форма записи представляет собой так называемое каноническое разложение числа на простые множители .

Приведем пример канонического разложения числа на простые множители. Пусть нам известно разложение 609 840=2·2·2·2·3·3·5·7·11·11 , его каноническая форма записи имеет вид 609 840=2 4 ·3 2 ·5·7·11 2 .

Каноническое разложение числа на простые множители позволяет найти все делители числа и число делителей числа .

Алгоритм разложения числа на простые множители

Чтобы успешно справиться с задачей разложения числа на простые множители, нужно очень хорошо владеть информацией статьи простые и составные числа .

Суть процесса разложения целого положительного и превосходящего единицу числа a понятна из доказательства основной теоремы арифметики . Смысл состоит в последовательном нахождении наименьших простых делителей p 1 , p 2 , …,p n чисел a, a 1 , a 2 , …, a n-1 , что позволяет получить ряд равенств a=p 1 ·a 1 , где a 1 =a:p 1 , a=p 1 ·a 1 =p 1 ·p 2 ·a 2 , где a 2 =a 1:p 2 , …, a=p 1 ·p 2 ·…·p n ·a n , где a n =a n-1:p n . Когда получается a n =1 , то равенство a=p 1 ·p 2 ·…·p n даст нам искомое разложение числа a на простые множители. Здесь же следует заметить, что p 1 ≤p 2 ≤p 3 ≤…≤p n .

Осталось разобраться с нахождением наименьших простых делителей на каждом шаге, и мы будем иметь алгоритм разложения числа на простые множители. Находить простые делители нам поможет таблица простых чисел . Покажем, как с ее помощью получить наименьший простой делитель числа z .

Последовательно берем простые числа из таблицы простых чисел (2 , 3 , 5 , 7 , 11 и так далее) и делим на них данное число z . Первое простое число, на которое z разделится нацело, и будет его наименьшим простым делителем. Если число z простое, то его наименьшим простым делителем будет само число z . Здесь же следует напомнить, что если z не является простым числом, то его наименьший простой делитель не превосходит числа , где - из z . Таким образом, если среди простых чисел, не превосходящих , не нашлось ни одного делителя числа z , то можно делать вывод о том, что z – простое число (более подробно об этом написано в разделе теории под заголовком данное число простое или составное).

Для примера покажем, как найти наименьший простой делитель числа 87 . Берем число 2 . Делим 87 на 2 , получаем 87:2=43 (ост. 1) (если необходимо, смотрите статью ). То есть, при делении 87 на 2 получается остаток 1 , поэтому 2 – не является делителем числа 87 . Берем следующее простое число из таблицы простых чисел, это число 3 . Делим 87 на 3 , получаем 87:3=29 . Таким образом, 87 делится на 3 нацело, следовательно, число 3 является наименьшим простым делителем числа 87 .

Заметим, что в общем случае для разложения на простые множители числа a нам потребуется таблица простых чисел до числа, не меньшего, чем . К этой таблице нам придется обращаться на каждом шаге, так что ее нужно иметь под рукой. Например, для разложения на простые множители числа 95 нам будет достаточно таблицы простых чисел до 10 (так как 10 больше, чем ). А для разложения числа 846 653 уже будет нужна таблица простых чисел до 1 000 (так как 1 000 больше, чем ).

Теперь мы обладаем достаточными сведениями, чтобы записать алгоритм разложения числа на простые множители . Алгоритм разложения числа a таков:

  • Последовательно перебирая числа из таблицы простых чисел, находим наименьший простой делитель p 1 числа a , после чего вычисляем a 1 =a:p 1 . Если a 1 =1 , то число a – простое, и оно само является своим разложением на простые множители. Если же a 1 на равно 1 , то имеем a=p 1 ·a 1 и переходим к следующему шагу.
  • Находим наименьший простой делитель p 2 числа a 1 , для этого последовательно перебираем числа из таблицы простых чисел, начиная с p 1 , после чего вычисляем a 2 =a 1:p 2 . Если a 2 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 . Если же a 2 на равно 1 , то имеем a=p 1 ·p 2 ·a 2 и переходим к следующему шагу.
  • Перебирая числа из таблицы простых чисел, начиная с p 2 , находим наименьший простой делитель p 3 числа a 2 , после чего вычисляем a 3 =a 2:p 3 . Если a 3 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 ·p 3 . Если же a 3 на равно 1 , то имеем a=p 1 ·p 2 ·p 3 ·a 3 и переходим к следующему шагу.
  • Находим наименьший простой делитель p n числа a n-1 , перебирая простые числа, начиная с p n-1 , а также a n =a n-1:p n , причем a n получается равно 1 . Этот шаг является последним шагом алгоритма, здесь получаем искомое разложение числа a на простые множители: a=p 1 ·p 2 ·…·p n .

Все результаты, полученные на каждом шаге алгоритма разложения числа на простые множители, для наглядности представляют в виде следующей таблицы, в которой слева от вертикальной черты записывают последовательно в столбик числа a, a 1 , a 2 , …, a n , а справа от черты – соответствующие наименьшие простые делители p 1 , p 2 , …, p n .

Осталось лишь рассмотреть несколько примеров применения полученного алгоритма для разложения чисел на простые множители.

Примеры разложения на простые множители

Сейчас мы подробно разберем примеры разложения чисел на простые множители . При разложении будем применять алгоритм из предыдущего пункта. Начнем с простых случаев, и постепенно их будем усложнять, чтобы столкнуться со всеми возможными нюансами, возникающими при разложении чисел на простые множители.

Пример.

Разложите число 78 на простые множители.

Решение.

Начинаем поиск первого наименьшего простого делителя p 1 числа a=78 . Для этого начинаем последовательно перебирать простые числа из таблицы простых чисел. Берем число 2 и делим на него 78 , получаем 78:2=39 . Число 78 разделилось на 2 без остатка, поэтому p 1 =2 – первый найденный простой делитель числа 78 . В этом случае a 1 =a:p 1 =78:2=39 . Так мы приходим к равенству a=p 1 ·a 1 имеющему вид 78=2·39 . Очевидно, что a 1 =39 отлично от 1 , поэтому переходим ко второму шагу алгоритма.

Теперь ищем наименьший простой делитель p 2 числа a 1 =39 . Начинаем перебор чисел из таблицы простых чисел, начиная с p 1 =2 . Делим 39 на 2 , получаем 39:2=19 (ост. 1) . Так как 39 не делится нацело на 2 , то 2 не является его делителем. Тогда берем следующее число из таблицы простых чисел (число 3 ) и делим на него 39 , получаем 39:3=13 . Следовательно, p 2 =3 – наименьший простой делитель числа 39 , при этом a 2 =a 1:p 2 =39:3=13 . Имеем равенство a=p 1 ·p 2 ·a 2 в виде 78=2·3·13 . Так как a 2 =13 отлично от 1 , то переходим к следующему шагу алгоритма.

Здесь нам нужно отыскать наименьший простой делитель числа a 2 =13 . В поисках наименьшего простого делителя p 3 числа 13 будем последовательно перебирать числа из таблицы простых чисел, начиная с p 2 =3 . Число 13 не делится на 3 , так как 13:3=4 (ост. 1) , также 13 не делится на 5 , 7 и на 11 , так как 13:5=2 (ост. 3) , 13:7=1 (ост. 6) и 13:11=1 (ост. 2) . Следующим простым числом является 13 , и на него 13 делится без остатка, следовательно, наименьший простой делитель p 3 числа 13 есть само число 13 , и a 3 =a 2:p 3 =13:13=1 . Так как a 3 =1 , то этот шаг алгоритма является последним, а искомое разложение числа 78 на простые множители имеет вид 78=2·3·13 (a=p 1 ·p 2 ·p 3 ).

Ответ:

78=2·3·13 .

Пример.

Представьте число 83 006 в виде произведения простых множителей.

Решение.

На первом шаге алгоритма разложения числа на простые множители находим p 1 =2 и a 1 =a:p 1 =83 006:2=41 503 , откуда 83 006=2·41 503 .

На втором шаге выясняем, что 2 , 3 и 5 не являются простыми делителями числа a 1 =41 503 , а число 7 – является, так как 41 503:7=5 929 . Имеем p 2 =7 , a 2 =a 1:p 2 =41 503:7=5 929 . Таким образом, 83 006=2·7·5 929 .

Наименьшим простым делителем числа a 2 =5 929 является число 7 , так как 5 929:7=847 . Таким образом, p 3 =7 , a 3 =a 2:p 3 =5 929:7=847 , откуда 83 006=2·7·7·847 .

Дальше находим, что наименьший простой делитель p 4 числа a 3 =847 равен 7 . Тогда a 4 =a 3:p 4 =847:7=121 , поэтому 83 006=2·7·7·7·121 .

Теперь находим наименьший простой делитель числа a 4 =121 , им является число p 5 =11 (так как 121 делится на 11 и не делится на 7 ). Тогда a 5 =a 4:p 5 =121:11=11 , и 83 006=2·7·7·7·11·11 .

Наконец, наименьший простой делитель числа a 5 =11 – это число p 6 =11 . Тогда a 6 =a 5:p 6 =11:11=1 . Так как a 6 =1 , то этот шаг алгоритма разложения числа на простые множители является последним, и искомое разложение имеет вид 83 006=2·7·7·7·11·11 .

Полученный результат можно записать как каноническое разложение числа на простые множители 83 006=2·7 3 ·11 2 .

Ответ:

83 006=2·7·7·7·11·11=2·7 3 ·11 2 991 – простое число. Действительно, оно не имеет ни одного простого делителя, не превосходящего ( можно грубо оценить как , так как очевидно, что 991<40 2 ), то есть, наименьшим делителем числа 991 является оно само. Тогда p 3 =991 и a 3 =a 2:p 3 =991:991=1 . Следовательно, искомое разложение числа 897 924 289 на простые множители имеет вид 897 924 289=937·967·991 .

Ответ:

897 924 289=937·967·991 .

Использование признаков делимости для разложения на простые множители

В простых случаях разложить число на простые множители можно без использования алгоритма разложения из первого пункта данной статьи. Если числа не большие, то для их разложения на простые множители часто достаточно знать и признаки делимости . Приведем примеры для пояснения.

Например, нам требуется разложить на простые множители число 10 . Из таблицы умножения мы знаем, что 2·5=10 , а числа 2 и 5 очевидно простые, поэтому разложение на простые множители числа 10 имеет вид 10=2·5 .

Еще пример. При помощи таблицы умножения разложим на простые множители число 48 . Мы знаем, что шестью восемь – сорок восемь, то есть, 48=6·8 . Однако, ни 6 , ни 8 не являются простыми числами. Но мы знаем, что дважды три – шесть, и дважды четыре – восемь, то есть, 6=2·3 и 8=2·4 . Тогда 48=6·8=2·3·2·4 . Осталось вспомнить, что дважды два – четыре, тогда получим искомое разложение на простые множители 48=2·3·2·2·2 . Запишем это разложение в канонической форме: 48=2 4 ·3 .

А вот при разложении на простые множители числа 3 400 можно воспользоваться признаками делимости. Признаки делимости на 10, 100 позволяют утверждать, что 3 400 делится на 100 , при этом 3 400=34·100 , а 100 делится на 10 , при этом 100=10·10 , следовательно, 3 400=34·10·10 . А на основании признака делимости на 2 можно утверждать, что каждый из множителей 34 , 10 и 10 делится на 2 , получаем 3 400=34·10·10=2·17·2·5·2·5 . Все множители в полученном разложении являются простыми, поэтому это разложение является искомым. Осталось лишь переставить множители, чтобы они шли в порядке возрастания: 3 400=2·2·2·5·5·17 . Запишем также каноническое разложение данного числа на простые множители: 3 400=2 3 ·5 2 ·17 .

При разложении данного числа на простые множители можно использовать по очереди и признаки делимости и таблицу умножения. Представим число 75 в виде произведения простых множителей. Признак делимости на 5 позволяет нам утверждать, что 75 делится на 5 , при этом получаем, что 75=5·15 . А из таблицы умножения мы знаем, что 15=3·5 , поэтому, 75=5·3·5 . Это и есть искомое разложение числа 75 на простые множители.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.