Закон полного внутреннего отражения света. Полное внутреннее отражение

ЛЕКЦИЯ 23 ГЕОМЕТРИЧЕСКАЯ ОПТИКА

ЛЕКЦИЯ 23 ГЕОМЕТРИЧЕСКАЯ ОПТИКА

1. Законы отражения и преломления света.

2. Полное внутреннее отражение. Волоконная оптика.

3. Линзы. Оптическая сила линзы.

4. Аберрации линз.

5. Основные понятия и формулы.

6. Задачи.

При решении многих задач, связанных с распространением света, можно использовать законы геометрической оптики, основанные на представлении о световом луче как линии, вдоль которой распространяется энергия световой волны. В однородной среде световые лучи прямолинейны. Геометрическая оптика - это предельный случай волновой оптики при стремлении длины волны к нулю →0).

23.1. Законы отражения и преломления света. Полное внутреннее отражение, световоды

Законы отражения

Отражение света - явление, происходящее на границе раздела двух сред, в результате которого световой луч изменяет направление своего распространения, оставаясь в первой среде. Характер отражения зависит от соотношения между размерами (h) неровностей отражающей поверхности и длиной волны (λ) падающего излучения.

Диффузное отражение

Когда неровности расположены хаотично, а их размеры имеют порядок длины волны или превышают ее, возникает диффузное отражение - рассеяние света по всевозможным направлениям. Именно вследствие диффузного отражения несамосветящиеся тела становятся видимыми при отражении света от их поверхностей.

Зеркальное отражение

Если размеры неровностей малы по сравнению с длиной волны (h << λ), то возникает направленное, или зеркальное, отражение света (рис. 23.1). При этом выполняются следующие законы.

Падающий луч, отраженный луч и нормаль к границе раздела двух сред, проведенная через точку падения луча, лежат в одной плоскости.

Угол отражения равен углу падения: β = a.

Рис. 23.1. Ход лучей при зеркальном отражении

Законы преломления

Когда световой луч падает на границу раздела двух прозрачных сред, он делится на два луча: отраженный и преломленный (рис. 23.2). Преломленный луч распространяется во второй среде, изменив свое направление. Оптической характеристикой среды является абсолютный

Рис. 23.2. Ход лучей при преломлении

показатель преломления, который равен отношению скорости света в вакууме к скорости света в этой среде:

От соотношения показателей преломления двух сред и зависит направление преломленного луча. Выполняются следующие законы преломления.

Падающий луч, преломленный луч и нормаль к границе раздела двух сред, проведенная через точку падения луча, лежат в одной плоскости.

Отношение синуса угла падения к синусу угла преломления есть величина постоянная, равная отношению абсолютных показателей преломления второй и первой сред:

23.2. Полное внутреннее отражение. Волоконная оптика

Рассмотрим переход света из среды c большим показателем преломления n 1 (оптически более плотной) в среду с меньшим показателем преломления n 2 (оптически менее плотную). На рисунке 23.3 показаны лучи, падающие на границу стекло-воздух. Для стекла показатель преломления n 1 = 1,52; для воздуха n 2 = 1,00.

Рис. 23.3. Возникновение полного внутреннего отражения (n 1 > n 2)

Увеличение угла падения приводит к увеличению угла преломления до тех пор, пока угол преломления не станет равным 90°. При дальнейшем увеличении угла падения падающий луч не преломляется, а полностью отражается от границы раздела. Это явление называется полным внутренним отражением. Оно наблюдается при падении света из более плотной среды на границу с менее плотной средой и состоит в следующем.

Если угол падения превышает предельный для данных сред угол, то преломления на границе раздела не происходит и падающий свет отражается полностью.

Предельный угол падения определяется соотношением

Сумма интенсивностей отраженного и преломленного лучей равна интенсивности падающего луча. При увеличении угла падения интенсивность отраженного луча растет, а интенсивность преломленного луча убывает и для предельного угла падения становится равной нулю.

Волоконная оптика

Явление полного внутреннего отражения используется в гибких световодах.

Если свет направить на торец тонкого стеклянного волокна, окруженного оболочкой с меньшим показателем преломления угла, то свет будет распространяться по волокну, испытывая полное отражение на границе стекло-оболочка. Такое волокно называется световодом. Изгибы световода не препятствуют прохождению света

В современных световодах потери света в результате его поглощения весьма малы (порядка 10 % на км), что позволяет использовать их в волоконно-оптических системах связи. В медицине жгуты из тонких световодов используют для изготовления эндоскопов, которые применяются для визуального исследования полых внутренних органов (рис. 23.5). Число волокон в эндоскопе достигает миллиона.

С помощью отдельного световодного канала, уложенного в общий жгут, осуществляется передача лазерного излучения с целью лечебного воздействия на внутренние органы.

Рис. 23.4. Распространение световых лучей по световоду

Рис. 23.5. Эндоскоп

Существуют и природные световоды. Например, у травянистых растений стебель играет роль световода, подводящего свет в подземную часть растения. Клетки стебля образуют параллельные колонки, что напоминает конструкцию промышленных световодов. Если

освещать такую колонку, рассматривая ее через микроскоп, то видно, что ее стенки при этом остаются темными, а внутренность каждой клетки ярко освещена. Глубина, на которую доставляется таким способом свет, не превышает 4-5 см. Но и такого короткого световода достаточно, чтобы обеспечить светом подземную часть травянистого растения.

23.3. Линзы. Оптическая сила линзы

Линза - прозрачное тело, ограниченное обычно двумя сферическими поверхностями, каждая из которых может быть выпуклой или вогнутой. Прямая, проходящая через центры этих сфер, называется главной оптической осью линзы (слово главная обычно опускают).

Линза, максимальная толщина которой значительно меньше радиусов обеих сферических поверхностей, называется тонкой.

Проходя через линзу, световой луч изменяет направление - отклоняется. Если отклонение происходит в сторону оптической оси, то линза называется собирающей, в противном случае линза называется рассеивающей.

Любой луч, падающий на собирающую линзу параллельно оптической оси, после преломления проходит через точку оптической оси (F), называемую главным фокусом (рис. 23.6, а). Для рассеивающей линзы через фокус проходит продолжение преломленного луча (рис. 23.6, б).

У каждой линзы имеются два фокуса, расположенные по обе ее стороны. Расстояние от фокуса до центра линзы называется главным фокусным расстоянием (f).

Рис. 23.6. Фокус собирающей (а) и рассеивающей (б) линз

В расчетных формулах f берется со знаком «+» для собирающей линзы и со знаком «-» для рассеивающей линзы.

Величина, обратная фокусному расстоянию, называется оптической силой линзы: D = 1/f. Единица оптической силы - диоптрия (дптр). 1 дптр - это оптическая сила линзы с фокусным расстоянием 1 м.

Оптическая сила тонкой линзы и ее фокусное расстояние зависят от радиусов сфер и показателя преломления вещества линзы относительно окружающей среды:

где R 1 , R 2 - радиусы кривизны поверхностей линзы; n - показатель преломления вещества линзы относительно окружающей среды; знак «+» берется для выпуклой поверхности, а знак «-» - для вогнутой. Одна из поверхностей может быть плоской. В этом случае принимают R = ∞, 1/R = 0.

Линзы используются для получения изображений. Рассмотрим предмет, расположенный перпендикулярно оптической оси собирающей линзы, и построим изображение его верхней точки А. Изображение всего предмета также будет перпендикулярно оси линзы. В зависимости от положения предмета относительно линзы возможны два случая преломления лучей, показанные на рис. 23.7.

1. Если расстояние от предмета до линзы превышает фокусное расстояние f, то лучи, испущенные точкой А, после прохождения линзы пересекаются в точке А", которая называется действительным изображением. Действительное изображение получается перевернутым.

2. Если расстояние от предмета до линзы меньше фокусного расстояния f, то лучи, испущенные точкой А, после прохождения линзы рас-

Рис. 23.7. Действительное (а) и мнимое (б) изображения, даваемые собирающей линзой

ходятся и в точке А" пересекаются их продолжения. Эта точка называется мнимым изображением. Мнимое изображение получается прямым.

Рассеивающая линза дает мнимое изображение предмета при всех его положениях (рис. 23.8).

Рис. 23.8. Мнимое изображение, даваемое рассеивающей линзой

Для расчета изображения используется формула линзы, которая устанавливает связь между положениями точки и ее изображения

где f - фокусное расстояние (для рассеивающей линзы оно отрицательно), a 1 - расстояние от предмета до линзы; a 2 - расстояние от изображения до линзы (знак «+» берется для действительного изображения, а знак «-» - для мнимого изображения).

Рис. 23.9. Параметры формулы линзы

Отношение размеров изображения к размерам предмета называется линейным увеличением:

Линейное увеличение рассчитывается по формуле k = а 2 /а 1 . Линза (даже тонкая) будет давать «правильное» изображение, подчиняющееся формуле линзы, только при выполнении следующих условий:

Показатель преломления линзы не зависит от длины волны света или свет достаточно монохроматичен.

При получении с помощью линз изображений реальных предметов эти ограничения, как правило, не выполняются: имеет место дисперсия; некоторые точки предмета лежат в стороне от оптической оси; падающие световые пучки не являются параксиальными, линза не является тонкой. Все это приводит к искажению изображений. Для уменьшения искажений объективы оптических приборов изготавливают из нескольких линз, расположенных вплотную друг к другу. Оптическая сила такого объектива равна сумме оптических сил линз:

23.4. Аберрации линз

Аберрации - общее название для погрешностей изображения, возникающих при использовании линз. Аберрации (от лат. «aberratio» - отклонение), которые проявляются только в немонохроматическом свете, называются хроматическими. Все остальные виды аберраций являются монохроматическими, так как их проявление не связано со сложным спектральным составом реального света.

1. Сферическая аберрация - монохроматическая аберрация, обусловленная тем, что крайние (периферические) части линзы сильнее отклоняют лучи, идущие от точечного источника, чем ее центральная часть. В результате этого периферическая и центральная области линзы формируют различные изображения (S 2 и S" 2 соотвественно) точечного источника S 1 (рис. 23.10). Поэтому при любом положении экрана изображение на нем получается в виде светлого пятна.

Этот вид аберрации устраняется путем использования систем, состоящих из вогнутой и выпуклой линз.

Рис. 23.10. Сферическая аберрация

2. Астигматизм - монохроматическая аберрация, состоящая в том, что изображение точки имеет вид пятна эллиптической формы, которое при некоторых положениях плоскости изображения вырождается в отрезок.

Астигматизм косых пучков проявляется тогда, когда лучи, исходящие из точки, составляют значительные углы с оптической осью. На рисунке 23.11, а точечный источник расположен на побочной оптической оси. При этом возникают два изображения в виде отрезков прямых линий, расположенных перпендикулярно друг другу в плоскостях I и II. Изображение источника можно получить лишь в виде расплывчатого пятна между плоскостями I и II.

Астигматизм, обусловленный асимметрией оптической системы. Этот вид астигматизма возникает, когда симметрия оптической системы по отношению к пучку света нарушена в силу устройства самой системы. При такой аберрации линзы создают изображение, в котором контуры и линии, ориентированные в разных направлениях, имеют разную резкость. Это наблюдается в цилиндрических линзах (рис. 23.11, б).

Цилиндрическая линза образует линейное изображение точечного объекта.

Рис. 23.11. Астигматизм: косых пучков (а); обусловленный цилиндричностью линзы (б)

В глазу астигматизм образуется при асимметрии в кривизне систем хрусталика и роговицы. Для исправления астигматизма служат очки, которые имеют различную кривизну в разных направлениях.

3. Дисторсия (искажение). Когда лучи, посылаемые предметом, составляют большой угол с оптической осью, обнаруживается еще один вид монохроматической аберрации - дисторсия. В этом случае нарушается геометрическое подобие между объектом и изображением. Причина состоит в том, что в действительности линейное увеличение, даваемое линзой, зависит от угла падения лучей. В результате изображение квадратной сетки принимает либо подушко-, либо бочкообразный вид (рис. 23.12).

Для борьбы с дисторсией подбирают систему линз с противоположной дисторсией.

Рис. 23.12. Дисторсия: а - подушкообразная, б - бочкообразная

4. Хроматическая аберрация проявляется в том, что пучок белого света, исходящий из точки, дает ее изображение в виде радужного круга, фиолетовые лучи пересекаются ближе к линзе, чем красные (рис. 23.13).

Причина хроматической аберрации заключается в зависимости показателя преломления вещества от длины волны падающего света (дисперсия). Для исправления этой аберрации в оптике используют линзы, изготавливаемые из стекол с разной дисперсией (ахроматы, апохроматы).

Рис. 23.13. Хроматическая аберрация

23.5. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

23.6. Задачи

1. Почему блестят воздушные пузыри в воде?

Ответ: за счет отражения света на границе «вода-воздух».

2. Почему в тонкостенном стакане с водой ложечка кажется увеличенной?

Ответ: вода в стакане выполняет роль цилиндрической собирающей линзы. Мы видим мнимое увеличенное изображение.

3. Оптическая сила линзы составляет 3 дптр. Чему равно фокусное расстояние линзы? Ответ выразить в см.

Решение

D = 1/f, f = 1/D = 1/3 = 0,33 м. Ответ: f = 33 см.

4. Фокусные расстояния у двух линз равны соответственно: f = +40 см, f 2 = -40 см. Найти их оптические силы.

6. Каким образом в ясную погоду можно определить фокусное расстояние собирающей линзы?

Решение

Расстояние от Солнца до Земли столь велико, что все лучи, падающие на линзу, параллельны друг другу. Если на экране получить изображение Солнца, то расстояние от линзы до экрана будет равно фокусному расстоянию.

7. Для линзы с фокусным расстоянием, равным 20 см, найти расстояния до объекта, при которых линейный размер действительного изображения будет: а) вдвое больше, чем размер объекта; б) равен размеру объекта; в) вдвое меньше, чем размер объекта.

8. Оптическая сила хрусталика для человека с нормальным зрением равна 25 дптр. Показатель преломления 1,4. Вычислить радиусы кривизны хрусталика, если известно, что один радиус кривизны в 2 раза больше другого.

    На рисунке а показан нормальный луч, который проходит границу «воздух — плексиглас» и выходит из плексигласовой пластины, не претерпевая никакого отклонения при прохождении двух границ между плексигласом и воздухом. На рисунке б показан луч света, входящий в полукруглую пластину нормально без отклонения, но составляющий угол у с нормалью в точке О внутри пластины плексигласа. Когда луч покидает более плотную среду (плексиглас), скорость его распространения в менее плотной среде (воздухе) увеличивается. Поэтому он преломляется, составляя угол х по отношению к нормали в воздухе, который больше, чем у.

    Исходя из того что n = sin (угол, который луч составляет с нормалью в воздухе) / sin (угол, который луч составляет с нормалью в среде), плексигласа n n = sin x/sin у. Если производится несколько измерений х и у, то показатель преломления плексигласа может быть подсчитан усреднением результатов для каждой пары величин. Угол у может быть увеличен путем перемещения источника света по дуге круга с центром в точке О.

    Результатом этого является увеличение угла х до тех пор, пока не достигается положение, показанное на рисунке в , т. е. пока х не станет равен 90 о . Ясно, что угол х не может быть больше. Угол, который теперь луч образует с нормалью внутри плексигласа, называется критическим или предельным углом с (это тот угол падения на границу из более плотной среды в менее плотную, когда угол преломления в менее плотной среде составляет 90°).

    Обычно наблюдается слабый отраженный луч, так же как и яркий луч, который преломляется вдоль прямого края пластины. Это является следствием частичного внутреннего отражения. Заметьте также, что когда используется белый свет, то свет, появляющийся вдоль прямого края, разлагается на цвета спектра. Если источник света продвинут далее вокруг дуги, как на рисунке г , так что I внутри плексигласа становится больше критического угла с и преломления на границе двух сред не происходит. Вместо этого луч испытывает полное внутреннее отражение под углом r по отношению к нормали, где r = i.

    Чтобы произошло полное внутреннее отражение , угол падения i должен быть измерен внутри более плотной среды (плексигласа) и он должен быть больше критического угла с. Заметьте, что закон отражения также справедлив для всех углов падения больше критического угла.

    Критический угол бриллианта составляет лишь 24°38". Его «высверк», таким образом, зависит от той легкости, с которой происходит множественное полное внутреннее отражение, когда он освещается светом, что в большой мере зависит от искусной огранки и полировки, усиливающей этот эффект. Ранее было определено, что n = 1 /sin с, поэтому точное измерение критического угла с позволит определить n.

    Исследование 1. Определить n для плексигласа методом нахождения критического угла

    Поместите полукруглую пластину плексигласа в центре большого листа белой бумаги и тщательно обведите ее очертания. Найдите среднюю точку О прямого края пластины. При помощи транспортира постройте нормаль NO, перпендикулярную этому прямому краю в точке О. Вновь поместите пластину в ее очертания. Передвигайте источник света вокруг дуги влево от NO, все время направляя падающий луч на точку О. Когда преломленный луч пойдет вдоль прямого края, как показано на рисунке, отметьте путь падающего луча тремя точками Р 1 , Р 2 , и P 3 .

    Временно уберите пластину и соедините три эти точки прямой линией, которая должна пройти через О. При помощи транспортира измерьте критический угол с между прочерченным падающим лучом и нормалью. Вновь аккуратно поместите пластину в ее очертания и повторите проделанное прежде, но на этот раз двигайте источник света вокруг дуги вправо от NO, непрерывно направляя луч на точку О. Запишите два измеренных значения с в таблицу результатов и определите среднее значение критического угла с. Затем определите показатель преломления n n для плексигласа по формуле n n = 1 /sin с.

    Прибор для исследования 1 может быть также использован для того, чтобы показать, что для лучей света, распространяющихся в более плотной среде (плексиглас) и падающих на границу раздела «плексиглас — воздух» под углами, большими критического угла с, угол падения i равен углу отражения r.

    Исследование 2. Проверить закон отражения света для углов падения, больших критического угла

    Поместить полукруглую пластину плексигласа на большой лист белой бумаги и тщательно обведите ее очертания. Как и в первом случае, найдите среднюю точку О и постройте нормаль NO. Для плексигласа критический угол с = 42°, следовательно, углы падения i > 42° больше критического угла. При помощи транспортира постройте лучи под углами 45°, 50°, 60°, 70° и 80° к нормали NO.

    Вновь аккуратно поместите пластину плексигласа в ее очертания и направьте луч света из источника света вдоль линии 45°. Луч направится к точке О, отразится и появится с дугообразной стороны пластины по другую сторону от нормали. Отметьте три точки P 1 , Р 2 и Р 3 на отраженном луче. Временно уберите пластину и соедините три точки прямой линией, которая должна пройти через точку О.

    При помощи транспортира измерьте угол отражения r между и отраженным лучом, записав результаты в таблицу. Аккуратно поместите пластину в ее очертания и повторите проделанное для углов 50°, 60°, 70° и 80° к нормали. Запишите значение r в соответствующее место таблицы результатов. Постройте график зависимости угла отражения r от угла падения i. Прямолинейный график, построенный в диапазоне углов падения от 45° до 80°, будет достаточен, чтобы показать, что угол i равен углу r.

При распространении волн в среде, в том числе и электромагнитных, для нахождения нового фронта волны в любой момент времени используют принцип Гюйгенса.

Каждая точка фронта волны является источником вторичных волн.

В однородной изотропной среде волновые поверхности вторичных волн имеют вид сфер радиуса v×Dt, где v - cкорость распространения волны в среде. Проводя огибающую волновых фронтов вторичных волн, получаем новый фронт волны в данный момент времени (рис. 7.1, а, б).

Закон отражения

Используя принцип Гюйгенса можно доказать закон отражения электромагнитных волн на границе раздела двух диэлектриков.

Угол падения равен углу отражения. Лучи, падающий и отраженный, вместе с перпендикуляром к границе раздела двух диэлектриков, лежат в одной плоскости. Ð a = Ð b. (7.1)

Пусть на плоскую границу СД раздела двух сред падает плоская световая волна (лучи 1 и 2, рис. 7.2). Угол a между лучом и перпендикуляром к СД называют углом падения. Если в данный момент времени фронт падающей волны ОВ достигает т. О, то согласно принципу Гюйгенса эта точка

Рис. 7.2

начинает излучать вторичную волну. За время Dt = ВО 1 /v падающий луч 2 достигает т. О 1 . За это же время фронт вторичной волны, после отражения в т. О, распространяясь в той же среде, достигает точек полусферы, радиусом ОА = v Dt = BO 1 .Новый фронт волны изображен плоскостью АО 1 , а направление распространения - лучом ОА. Угол b называют углом отражения. Из равенства треугольников ОАО 1 и ОВО 1 следует закон отражения: угол падения равен углу отражения.

Закон преломления

Оптически однородная среда 1 характеризуется , (7.2)

Отношение n 2 / n 1 = n 21 (7.4)

называют

(7.5)

Для вакуума n = 1.

Из-за дисперсии (частоты света n » 10 14 Гц), например, для воды n =1,33, а не n = 9 (e = 81), как это следует из электродинамики для малых частот. Если скорость распространения света в первой среде v 1 , а во второй - v 2 ,

Рис. 7.3

то за время Dt прохождения падающей плоской волной расстояния АО 1 в первой среде АО 1 ­ = v 1 Dt. Фронт вторичной волны, возбуждаемый во второй среде (в соответствии с принципом Гюйгенса), достигает точек полусферы, радиус которой ОВ = v 2 Dt. Новый фронт волны, распространяемой во второй среде, изображается плоскостью ВО 1 (рис. 7.3), а направление ее распространения - лучами ОВ и О 1 С (перпендикулярными к фронту волны). Угол b между лучом ОВ и нормалью к границе раздела двух диэлектриков в точке О называют углом преломления. Из треугольников ОАО 1 и ОВО 1 следует, что АО 1 = ОО 1 sin a, OB = OO 1 sin b.

Их отношение и выражает закон преломления (закон Снеллиуса):

. (7.6)

Отношение синуса угла падения к синусу угла преломления равно относительному показателю преломления двух сред.

Полное внутреннее отражение

Рис. 7.4

Согласно закону преломления на границе раздела двух сред можно наблюдать полное внутреннее отражение , если n 1 > n 2 , т. е. Ðb >Ða (рис. 7.4). Следовательно, существует такой предельный угол падения Ða пр, когда Ðb = 90 0 . Тогда закон преломления (7.6) принимает следующий вид:

sin a пр = , (sin 90 0 =1) (7.7)

При дальнейшем увеличении угла падения Ða > Ða пр свет полностью отражается от границы раздела двух сред.

Такое явление называют полным внутренним отражением и широкоиспользуют в оптике, например, для изменения направления световых лучей (рис. 7. 5, а, б).

Применяется в телескопах, биноклях, волоконной оптике и других оптических приборах.

В классических волновых процессах, таких, как явление полного внутреннего отражения электромагнитных волн, наблюдаются явления, аналогичные туннельному эффекту в квантовой механике, что связано с корпускулярно-волновыми свойствами частиц.

Действительно, при переходе света из одной среды в другую наблюдается преломление света, связанное с изменением скорости его распространения в различных средах. На границе раздела двух сред луч света разделяется на два: преломленный и отраженный.

На грань 1 прямоугольной равнобедренной стеклянной призмы перпендикулярно падает луч света и, не преломляясь падает на грань 2, наблюдается полное внутреннее отражение, так как угол падения (Ða = 45 0) луча на грань 2 больше предельного угла полного внутреннего отражения (для стекла n 2 = 1,5; Ða пр = 42 0).

Если на некотором расстоянии H ~ l/2 от грани 2 поместить такую же призму, то луч света пройдет через грань 2 * и выйдет из призмы через грань 1 * параллельно лучу, падавшему на грань 1. Интенсивность J прошедшего светового потока экспоненциально убывает с увеличением промежутка h между призмами по закону:

,

где w - некоторая вероятность прохождения луча во вторую среду; d - коэффициент, зависящий от показателя преломления вещества; l - длина волны падающего света

Следовательно, проникновение света в «запрещенную» область представляет собой оптическую аналогию квантового туннельного эффекта.

Явление полного внутреннего отражения действительно является полным, так как при этом отражается вся энергия падающего света на границу раздела двух сред, чем при отражении, например, от поверхности металлических зеркал. Используя это явление можно проследить еще одну аналогию между преломлением и отражением света, с одной стороны, и излучением Вавилова-Черенкова, с другой стороны.



ИНТЕРФЕРЕНЦИЯ ВОЛН

7.2.1. Роль векторов и

На практике в реальных средах могут распространяться одновременно несколько волн. В результате сложения волн наблюдается ряд интересных явлений: интерференция, дифракция, отражение и преломление волн и т. д.

Эти волновые явления характерны не только для механических волн, но и электрических, магнитных, световых и т. д. Волновые свойства проявляют и все элементарные частицы, что было доказано квантовой механикой.

Одно из интереснейших волновых явлений, которое наблюдается при распространении в среде двух и более волн, получило название интерференции. Оптически однородная среда 1 характеризуется абсолютным показателем преломления , (7.8)

где с - скорость света в вакууме; v 1 - cкорость света в первой среде.

Среда 2 характеризуется абсолютным показателем преломления

где v 2 - скорость света во второй среде.

Отношение (7.10)

называют относительным показателем преломления второй среды относительно первой. Для прозрачных диэлектриков, у которых m = 1, используя теорию Максвелла, или

где e 1 , e 2 - диэлектрические проницаемости первой и второй сред.

Для вакуума n = 1. Из-за дисперсии (частоты света n » 10 14 Гц), например, для воды n =1,33, а не n = 9 (e = 81), как это следует из электродинамики для малых частот. Свет - электромагнитные волны. Поэтому электромагнитное поле определяется векторами и , характеризующими напряженности электрического и магнитного полей cоответственно. Однако во многих процессах взаимодействия света с веществом, например, таких, как воздействие света на органы зрения, фотоэлементы и другие приборы, определяющая роль принадлежит вектору , который в оптике называют световым вектором.

Полное внутреннее отражение

Вну́треннее отраже́ние - явление отражения электромагнитных волн от границы раздела двух прозрачных сред при условии, что волна падает из среды с бо́льшим показателем преломления .

Неполное внутреннее отражение - внутреннее отражение, при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый.

Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. К тому же, коэффициент отражения при полном внутреннем отражении не зависит от длины волны .

Этот оптический феномен наблюдается для широкого спектра электромагнитного излучения включая и рентгеновский диапазон .

В рамках геометрической оптики объяснение явления тривиально: опираясь на закон Снелла и учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду.

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду - там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

Полное внутреннее отражение света

Рассмотрим внутреннее отражение на примере двух монохроматических лучей, падающих на границу раздела двух сред. Лучи падают из зоны более плотной среды (обозначена более тёмным голубым цветом) с коэффициентом преломления на границу с менее плотной средой (обозначена светло-голубым цветом) с коэффициентом преломления.

Красный луч падает под углом , то есть на границе сред он раздваивается - частично преломляется и частично отражается. Часть луча преломляется под углом .

Зелёный луч падает и полностью отражается src="/pictures/wiki/files/100/d833a2d69df321055f1e0bf120a53eff.png" border="0">.

Полное внутреннее отражение в природе и технике

Отражение рентгеновских лучей

Преломление рентгеновских лучей при скользящем падении было впервые сформулировано М. А. Кумаховым, разработавшим рентгеновское зеркало , и теоретически обосновано Артуром Комптоном в 1923 году .

Другие волновые явления

Демонстрация преломления, а значит и эффекта полного внутреннего отражения возможна, например, для звуковых волн на поверхности и в толще жидкости при переходе между зонами различной вязкости или плотности.

Явления, сходные с эффектом полного внутреннего отражения электромагнитного излучения, наблюдаются для пучков медленных нейтронов.

Если на поверхность раздела падает вертикально поляризованная волна под углом Брюстера , то будет наблюдаться эффект полного преломления - отраженная волна будет отсутствовать.

Примечания

Wikimedia Foundation . 2010 .

  • Полное дыхание
  • Полное изменение

Смотреть что такое "Полное внутреннее отражение" в других словарях:

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - отражение эл. магн. излучения (в частности, света) при его падении на границу раздела двух прозрачных сред из среды с большим показателем преломления. П. в. о. осуществляется, когда угол падения i превосходит нек рый предельный (критический) угол … Физическая энциклопедия

    Полное внутреннее отражение - Полное внутреннее отражение. При прохождении света из среды с n1 > n2 происходит полное внутреннее отражение, если угол падения a2 > aпр; при угле падения a1 Иллюстрированный энциклопедический словарь

    Полное внутреннее отражение - отражение оптического излучения (См. Оптическое излучение) (света) или электромагнитного излучения другого диапазона (например, радиоволн) при его падении на границу раздела двух прозрачных сред из среды с большим преломления показателем… … Большая советская энциклопедия

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - электромагнитных волн, происходит при прохождении их из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2 под углом падения a, превышающим предельный угол aпр, определяемый соотношением sinaпр=n2/n1. Полным… … Современная энциклопедия

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ, ОТРАЖЕНИЕ без ПРЕЛОМЛЕНИЯ света на границе. При прохождении света из более плотной среды (например, стекло) в менее плотную (вода или воздух) существует зона углов преломления, в которой свет не проходит через границу … Научно-технический энциклопедический словарь

    полное внутреннее отражение - Отражение света от среды оптически менее плотной с полным возвращением в среду, из которой он падает. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - электромагнитных волн происходит при их наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол… … Большой Энциклопедический словарь

    полное внутреннее отражение - электромагнитных волн, происходит при наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол iпр … Энциклопедический словарь

При некотором угле падения света ${\alpha }_{pad}={\alpha }_{pred}$, который называют предельным углом , угол преломления равен $\frac{\pi }{2},\ $при этом преломленный луч скользит по поверхности раздела сред, следовательно, преломленный луч отсутствует. Тогда из закона преломления можно записать, что:

Рисунок 1.

В случае полного отражения уравнение:

не имеет решения в области действительных значений угла преломления (${\alpha }_{pr}$). В таком случае $cos{(\alpha }_{pr})$ чисто мнимая величина. Если обратиться к Формулам Френеля, то их удобно представить в виде:

где угол падения обозначен $\alpha $ (для краткости написания), $n$ -- показатель преломления среды, где свет распространяется.

Из формул Френеля видно, что модули $\left|E_{otr\bot }\right|=\left|E_{otr\bot }\right|$, $\left|E_{otr//}\right|=\left|E_{otr//}\right|$, что означает, что отражение является «полным».

Замечание 1

Надо отметить, что неоднородная волна во второй среде не исчезает. Так, если $\alpha ={\alpha }_0={arcsin \left(n\right),\ то\ }$ $E_{pr\bot }=2E_{pr\bot }.$ Нарушения закона сохранения энергии в данном случае нет. Так как формулы Френеля справедливы для монохроматического поля, то есть к установившемуся процессу. В таком случае закон сохранения энергии требует, чтобы среднее за период изменение энергии во второй среде было равно нулю. Волна и соответствующая доля энергии проникает через грани цу раздела во вторую среду на небольшую глубину порядка длины волны и движется в ней параллельно границе раздела с фазовой скоростью, которая меньше фазовой скорости волны во второй среде. Он возвращается в первую среду в точке, которая смещена относительно точки входа.

Проникновение волны во вторую среду можно наблюдать в эксперименте. Интенсивность световой волны во второй среде заметна только на расстояниях меньших длины волны. Около поверхности раздела, на которую падает волна света, которая испытывает полное отражение, на стороне второй среды можно видеть свечение тонкого слоя, если во второй среде есть флуоресцирующее вещество.

Полное отражение вызывает возникновение миражей, когда поверхность земли имеет высокую температуру. Так, полное отражение света, которое идет от облаков приводит к появлению впечатления, что на поверхности нагретого асфальта находятся лужи.

При обычном отражении отношения $\frac{E_{otr\bot }}{E_{pad\bot }}$ и $\frac{E_{otr//}}{E_{pad//}}$ всегда вещественны. При полном отражении они комплексны. Это значит, что в таком случае фаза волны терпит скачок, при этом он отличен от нуля или $\pi $. Если волна поляризована перпендикулярно плоскости падения, то можно записать:

где ${\delta }_{\bot }$ - искомый скачок фазы. Приравняем вещественные и мнимые части, имеем:

Из выражений (5) получаем:

Соответственно, для волны, которая поляризована в плоскости падения можно получить:

Скачки фаз ${\delta }_{//}$ и ${\delta }_{\bot }$ не одинаковы. Отраженная волна будет поляризована эллиптически.

Применение полного отражения

Допустим, что две одинаковые среды разделены тонким воздушным промежутком. На него падает световая волна под углом, который больше, чем предельный. Может сложиться так, что она проникнет в воздушный промежуток как неоднородная волна. Если толщина зазора мала, то данная волна достигнет второй границы вещества и при этом будет не очень ослабленной. Перейдя из воздушного промежутка в вещество, волна превратится снова в однородную. Такой опыт был проведен еще Ньютоном. Ученый прижимал к гипотенузной грани прямоугольной призмы другую призму, которая со шлифована сферически. При этом свет проходил во вторую призму не только там, где они соприкасаются, но и в небольшом кольце вокруг контакта, в месте, где толщина зазора сравнима с длинной волны. Если наблюдения проводились в белом свете, то край кольца имел красноватую окраску. Так и должно быть, так как глубина проникновения пропорциональна длине волны (для красных лучей она больше, чем для синих). Изменяя толщину промежутка, можно изменять интенсивность проходящего света. Это явление легло в основу светового телефона, который был запатентован фирмой Цейсс. В этом устройстве в качестве одной из сред выступает прозрачная мембрана, которая совершает колебания под действием звука, падающего на нее. Свет, который проходит сквозь воздушный промежуток, изменяет интенсивность в такт с изменениями силы звука. Попадая на фотоэлемент, он порождает переменный ток, который меняется в соответствии с изменениями силы звука. Полученный ток усиливается и используется далее.

Явления проникновения волн сквозь тонкие промежутки не специфичны для оптики. Это возможно для волны любой природы, если фазовая скорость в промежутке выше, чем фазовая скорость в окружающей среде. Важное значение данное явление имеет в ядерной и атомной физике.

Явление полного внутреннего отражения используют для изменения направления распространения света. С этой целью используют призмы.

Пример 1

Задание: Приведите пример явления полного отражения, которое часто встречается.

Решение:

Можно привести такой пример. Если шоссейная дорога сильно нагрета, то температура воздуха максимальна около поверхности асфальта и убывает при увеличении расстояния от дороги. Значит, показатель преломления воздуха минимален у поверхности и растет при увеличении расстояния. Как результат этого, лучи, имеющие небольшой угол относительно поверхности шоссе терпят полное отражение. Если сконцентрировать свое внимание, при движении в автомобиле, на подходящем участке поверхности шоссе, то можно увидеть довольно далеко едущую впереди машину в перевернутом виде.

Пример 2

Задание: Каков угол Брюстера для пучка света, который падает на поверхность кристалла, если предельный угол полного отражения для данного пучка на границе раздела воздух -- кристалл равен 400?

Решение:

\[{tg(\alpha }_b)=\frac{n}{n_v}=n\left(2.2\right).\]

Из выражения (2.1) имеем:

Подставим правую часть выражения (2.3) в формулу (2.2), выразим искомый угол:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left({\alpha }_{pred}\right)\ }}\right).\]

Проведем вычисления:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left(40{}^\circ \right)\ }}\right)\approx 57{}^\circ .\]

Ответ: ${\alpha }_b=57{}^\circ .$