Произведение логарифмов с разными основаниями формула. Определение логарифма и его свойства: теория и решение задач

\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

Примеры:

\(\log_{5}{25}=2\)

т.к. \(5^{2}=25\)

\(\log_{3}{81}=4\)

т.к. \(3^{4}=81\)

\(\log_{2}\)\(\frac{1}{32}\) \(=-5\)

т.к. \(2^{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

\(\log_{4}{16}=2\)

\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение :

\(\log_{4\sqrt{2}}{8}=x\)

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_{a}{c}=b\) \(\Leftrightarrow\) \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки:
\(4=2^{2}\) \(\sqrt{2}=2^{\frac{1}{2}}\) \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\) \(=3\)


Умножим обе части уравнения на \(\frac{2}{5}\)


Получившийся корень и есть значение логарифма

Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример : Решите уравнение \(4^{5x-4}=10\)

Решение :

\(4^{5x-4}=10\)

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

Перед нами . Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

\(5x=\log_{4}{10}+4\)

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)


Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ : \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

\(a^{\log_{a}{c}}=c\)

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если \(a^{b}=c\), то \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение :

Ответ : \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)

И с одной третьей:

\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)

Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)

Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение :

Ответ : \(1\)


Продолжаем изучать логарифмы. В этой статье мы поговорим про вычисление логарифмов , этот процесс называют логарифмированием . Сначала мы разберемся с вычислением логарифмов по определению. Дальше рассмотрим, как находятся значения логарифмов с использованием их свойств. После этого остановимся на вычислении логарифмов через изначально заданные значения других логарифмов. Наконец, научимся использовать таблицы логарифмов. Вся теория снабжена примерами с подробными решениями.

Навигация по странице.

Вычисление логарифмов по определению

В простейших случаях возможно достаточно быстро и легко выполнить нахождение логарифма по определению . Давайте подробно рассмотрим, как происходит этот процесс.

Его суть состоит в представлении числа b в виде a c , откуда по определению логарифма число c является значением логарифма. То есть, нахождению логарифма по определению отвечает следующая цепочка равенств: log a b=log a a c =c .

Итак, вычисление логарифма по определению сводится к нахождению такого числа c , что a c =b , а само число c есть искомое значение логарифма.

Учитывая информацию предыдущих абзацев, когда число под знаком логарифма задано некоторой степенью основания логарифма, то можно сразу указать, чему равен логарифм – он равен показателю степени. Покажем решения примеров.

Пример.

Найдите log 2 2 −3 , а также вычислите натуральный логарифм числа e 5,3 .

Решение.

Определение логарифма позволяет нам сразу сказать, что log 2 2 −3 =−3 . Действительно, число под знаком логарифма равно основанию 2 в −3 степени.

Аналогично находим второй логарифм: lne 5,3 =5,3 .

Ответ:

log 2 2 −3 =−3 и lne 5,3 =5,3 .

Если же число b под знаком логарифма не задано как степень основания логарифма, то нужно внимательно посмотреть, нельзя ли прийти к представлению числа b в виде a c . Часто такое представление бывает достаточно очевидно, особенно когда число под знаком логарифма равно основанию в степени 1 , или 2 , или 3 , ...

Пример.

Вычислите логарифмы log 5 25 , и .

Решение.

Несложно заметить, что 25=5 2 , это позволяет вычислять первый логарифм: log 5 25=log 5 5 2 =2 .

Переходим к вычислению второго логарифма . Число можно представить в виде степени числа 7 : (при необходимости смотрите ). Следовательно, .

Перепишем третий логарифм в следующем виде . Теперь можно увидеть, что , откуда заключаем, что . Следовательно, по определению логарифма .

Коротко решение можно было записать так: .

Ответ:

log 5 25=2 , и .

Когда под знаком логарифма находится достаточно большое натуральное число, то его не помешает разложить на простые множители. Это часто помогает представить такое число в виде некоторой степени основания логарифма, а значит, вычислить этот логарифм по определению.

Пример.

Найдите значение логарифма .

Решение.

Некоторые свойства логарифмов позволяют сразу указать значение логарифмов. К таким свойствам относятся свойство логарифма единицы и свойство логарифма числа, равного основанию: log 1 1=log a a 0 =0 и log a a=log a a 1 =1 . То есть, когда под знаком логарифма находится число 1 или число a , равное основанию логарифма, то в этих случаях логарифмы равны 0 и 1 соответственно.

Пример.

Чему равны логарифмы и lg10 ?

Решение.

Так как , то из определения логарифма следует .

Во втором примере число 10 под знаком логарифма совпадает с его основанием, поэтому десятичный логарифм десяти равен единице, то есть, lg10=lg10 1 =1 .

Ответ:

И lg10=1 .

Отметим, что вычисление логарифмов по определению (которое мы разобрали в предыдущем пункте) подразумевает использование равенства log a a p =p , которое является одним из свойств логарифмов.

На практике, когда число под знаком логарифма и основание логарифма легко представляются в виде степени некоторого числа, очень удобно использовать формулу , которая соответствует одному из свойств логарифмов. Рассмотрим пример нахождения логарифма, иллюстрирующий использование этой формулы.

Пример.

Вычислите логарифм .

Решение.

Ответ:

.

Не упомянутые выше свойства логарифмов также используются при вычислении, но об этом поговорим в следующих пунктах.

Нахождение логарифмов через другие известные логарифмы

Информация этого пункта продолжает тему использования свойств логарифмов при их вычислении. Но здесь основное отличие состоит в том, что свойства логарифмов используются для того, чтобы выразить исходный логарифм через другой логарифм, значение которого известно. Приведем пример для пояснения. Допустим, мы знаем, что log 2 3≈1,584963 , тогда мы можем найти, например, log 2 6 , выполнив небольшое преобразование с помощью свойств логарифма: log 2 6=log 2 (2·3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

В приведенном примере нам было достаточно использовать свойство логарифма произведения. Однако намного чаще приходится применять более широкий арсенал свойств логарифмов, чтобы вычислить исходный логарифм через заданные.

Пример.

Вычислите логарифм 27 по основанию 60 , если известно, что log 60 2=a и log 60 5=b .

Решение.

Итак, нам нужно найти log 60 27 . Несложно заметить, что 27=3 3 , и исходный логарифм в силу свойства логарифма степени можно переписать как 3·log 60 3 .

Теперь посмотрим, как log 60 3 выразить через известные логарифмы. Свойство логарифма числа, равного основанию, позволяет записать равенство log 60 60=1 . С другой стороны log 60 60=log60(2 2 ·3·5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Таким образом, 2·log 60 2+log 60 3+log 60 5=1 . Следовательно, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b .

Наконец, вычисляем исходный логарифм: log 60 27=3·log 60 3= 3·(1−2·a−b)=3−6·a−3·b .

Ответ:

log 60 27=3·(1−2·a−b)=3−6·a−3·b .

Отдельно стоит сказать о значении формулы перехода к новому основанию логарифма вида . Она позволяет от логарифмов с любыми основаниями переходить к логарифмам с конкретным основанием, значения которых известны или есть возможность их отыскать. Обычно от исходного логарифма по формуле перехода переходят к логарифмам по одному из оснований 2 , e или 10 , так как по этим основаниям существуют таблицы логарифмов, позволяющие с определенной степенью точности вычислять их значения. В следующем пункте мы покажем, как это делается.

Таблицы логарифмов, их использование

Для приближенного вычисления значений логарифмов могут быть использованы таблицы логарифмов . Наиболее часто используется таблица логарифмов по основанию 2 , таблица натуральных логарифмов и таблица десятичных логарифмов. При работе в десятичной системе счисления удобно пользоваться таблицей логарифмов по основанию десять. С ее помощью и будем учиться находить значения логарифмов.










Представленная таблица позволяет с точностью до одной десятитысячной находить значения десятичных логарифмов чисел от 1,000 до 9,999 (с тремя знаками после запятой). Принцип нахождения значения логарифма с помощью таблицы десятичных логарифмов разберем на конкретном примере – так понятнее. Найдем lg1,256 .

В левом столбце таблицы десятичных логарифмов находим две первые цифры числа 1,256 , то есть, находим 1,2 (это число для наглядности обведено синей линией). Третью цифру числа 1,256 (цифру 5 ) находим в первой или последней строке слева от двойной линии (это число обведено красной линией). Четвертую цифру исходного числа 1,256 (цифру 6 ) находим в первой или последней строке справа от двойной линии (это число обведено зеленой линией). Теперь находим числа в ячейках таблицы логарифмов на пересечении отмеченной строки и отмеченных столбцов (эти числа выделены оранжевым цветом). Сумма отмеченных чисел дает искомое значение десятичного логарифма с точностью до четвертого знака после запятой, то есть, lg1,236≈0,0969+0,0021=0,0990 .

А можно ли, используя приведенную таблицу, находить значения десятичных логарифмов чисел, имеющих больше трех цифр после запятой, а также выходящих за пределы от 1 до 9,999 ? Да, можно. Покажем, как это делается, на примере.

Вычислим lg102,76332 . Сначала нужно записать число в стандартном виде : 102,76332=1,0276332·10 2 . После этого мантиссу следует округлить до третьего знака после запятой, имеем 1,0276332·10 2 ≈1,028·10 2 , при этом исходный десятичный логарифм приближенно равен логарифму полученного числа, то есть, принимаем lg102,76332≈lg1,028·10 2 . Теперь применяем свойства логарифма: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2 . Наконец, находим значение логарифма lg1,028 по таблице десятичных логарифмов lg1,028≈0,0086+0,0034=0,012 . В итоге весь процесс вычисления логарифма выглядит так: lg102,76332=lg1,0276332·10 2 ≈lg1,028·10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012 .

В заключение стоит отметить, что используя таблицу десятичных логарифмов можно вычислить приближенное значение любого логарифма. Для этого достаточно с помощью формулы перехода перейти к десятичным логарифмам, найти их значения по таблице, и выполнить оставшиеся вычисления.

Для примера вычислим log 2 3 . По формуле перехода к новому основанию логарифма имеем . Из таблицы десятичных логарифмов находим lg3≈0,4771 и lg2≈0,3010 . Таким образом, .

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

274. Замечания.

а) Если в выражении, которое требуется вычислить, встречается сумма или разность чисел, то их надо находить без помощи таблиц обыкновенным сложением или вычитанием. Напр.:

log (35 +7,24) 5 = 5 log (35 + 7,24) = 5 log 42,24.

б) Умея логарифмировать выражения, мы можем, обратно, по данному результату логарифмирования найти то выражение, от которого получился этот результат; так, если

log х = log a + log b - 3 log с ,

то легко сообразить, что

в) Прежде чем перейти к рассмотрению устройства логарифмических таблиц, мы укажем некоторые свойства десятичных логарифмов, т.е. таких, в которых за основание принято число 10 (только такие логарифмы употребляются для вычислений).

Глава вторая.

Свойства десятичных логарифмов.

275 . а ) Так как 10 1 = 10, 10 2 = 100, 10 3 =1000, 10 4 = 10000 и т. д., то log 10 = 1, log 100 = 2, log 1000 = 3, log 10000 = 4, и т. д.

Значит, логарифм целого числа, изображаемого единицею с нулями, есть целое положительное число, содержащее столько единиц, сколько нулей в изображении числа.

Таким образом: log 100 000 = 5 , log 1000 000 = 6 , и т. д.

б ) Так как

log 0,1 = -l; log 0,01 = - 2; log 0,001 == -3; log 0,0001 = - 4, и т. д.

Значит, логарифм десятичной дроби, изображаемой единицею с предшествующими нулями, есть целое отрицательное число содержащее столько отрицательных единиц, сколько нулей в изображении дроби, считая в том числе и 0 целых.

Таким образом: log 0,00001= - 5, log 0,000001 = -6, и т. д.

в) Возьмем целое число, не изображаемое единицею с нулями, напр. 35, или целое число с дробью, напр. 10,7. Логарифм такого числа не может быть целым числом, так как, возвысив 10 в степень с целым показателем (положительным или отрицательным), мы получим 1 с нулями (следующими за 1, или ей предшествующими). Предположим теперь, что логарифм такого числа есть какая-нибудь дробь a / b . Тогда мы имели бы равенства

Но эти равенства невозможны, как как 10 а есть 1 с нулями, тогда как степени 35 b и 10,7 b ни при каком показателе b не могут дать 1 c нулями. Значит, нельзя допустить, чтобы log 35 и log 10,7 были равны дробям. Но из свойств логарифмической функции мы знаем (), что всякое положительное число имеет логарифм; следовательно, каждое из чисел 35 и 10,7 имеет свой логарифм, и так как он не может быть ни числом целым, ни числом дробным, то он есть число иррациональное и, следовательно, не может быть выражен точно посредством цифр. Обыкновенно иррациональные логарифмы выражают приближенно в виде десятичной дроби с несколькими десятичными знаками. Целое число этой дроби (хотя бы это было „0 целых") называется характеристикой , а дробная часть - мантиссой логарифма. Если, напр., логарифм есть 1,5441 , то характеристика его равна 1 , а мантисса есть 0,5441 .

г) Возьмем какое-нибудь целое или смешанное число, напр. 623 или 623,57 . Логарифм такого числа состоит из характеристики и мантиссы. Оказывается, что десятичные логарифмы обладают тем удобством, что характеристику их мы всегда можем найти по одному виду числа . Для этого сосчитаем, сколько цифр в данном целом числе, или в целой части смешанного числа, В наших примерах этих цифр 3 . Поэтому каждое из чисел 623 и 623,57 больше 100, но меньше 1000; значит, и логарифм каждого из них больше log 100 , т. е. больше 2 , но меньше log 1000 , т. е. меньше 3 (вспомним, что большее число имеет и больший логарифм). Следовательно, log 623 = 2 ,..., и log 623,57 = 2 ,... (точки заменяют собою неизвестные мантиссы).

Подобно этому найдем:

10 < 56,7 < 100

1 < log56,7 < 2

log 56,7 = 1,...

1000 < 8634 < 10 000

3 < log8634 < 4

log 8634 = 3,...

Пусть вообще в данной целом числе, или в целой части данного смешанного числа, содержится m цифр. Так как самое малое целое число, содержащее m цифр, есть 1 с m - 1 нулями на конце, то (обозначая данное число N ) можем написать неравенства:

и следовательно,

m - 1 < log N < m ,

log N = (m - 1) + положительная дробь .

Значит, характеристика logN = m - 1 .

Мы видим таким образом, что характеристика логарифма целого или смешанного числа содержит столько положительных единиц, сколько цифр в целой части числа без одной.

Заметив это, мы можем прямо писать:

log 7,205 = 0,...; log 83 = 1,...; log 720,4 = 2,... и т. п.

д) Возьмем несколько десятичных дробей, меньших 1 (т. е. имеющих 0 целых): 0,35; 0,07; 0,0056; 0,0008, и т. п.

Таким образом, каждый из этих логарифмов заключен между двумя целыми отрицательными числами, различающимися на одну единицу; поэтому каждый из них равен меньшему из этих отрицательных чисел, увеличенному на некоторую положительную дробь. Напр., log0,0056= -3 + положительная дробь . Предположим, что эта дробь будет 0,7482. Тогда, значит:

log 0,0056 = - 3 + 0,7482 (= - 2,2518).

Такие суммы, как - 3 + 0,7482 , состоящие из целого oтрицательного числа.и положительной десятичной дроби, условились при логарифмических вычислениях писать сокращенно так: 3 ,7482 (Такое число читается: 3 с минусом, 7482 десятитысячных .), т. е. ставят знак минус над характеристикой с целью показать, что он относится только к этой характеристике, а не к мантиссе, которая остается положительной. Таким образом, из приведенной выше таблички видно, что

log 0,35 == 1 ,....; log 0,07 = 2 ,....; log 0,0008 = 4 ,....

Пусть вообще . есть десятичная дробь, у которой перед первой значащей цифрой α стоит m нулей, считая в том числе и 0 целых. Тогда, очевидно, что

- m < log A < - (m - 1).

Так как из двух целых чисел:- m и - (m - 1) меньшее есть - m , то

log А = - m + положительная дробь ,

и потому характеристика log А = - m (при положительной мантиссе).

Таким образом, характеристика логарифма десятичной дроби, меньшей 1, содержит в себе столько отрицательных единиц, сколько нулей в изображении десятичной дроби перед первой значащей цифрой, считая в том числе и нуль целых; мантисса же такого логарифма положительна.

е) Умножим какое-нибудь число N (целое или дробное - всe равно) на 10, на 100 на 1000..., вообще на 1 c нулями. Посмотрим, как от этого изменится log N . Так как логарифм произведения равен сумме логарифмов сомножителей, то

log (N 10) = log N + log 10 = log N + 1;

log (N 100) = log N + log 100 = log N + 2;

log (N 1000) = log N + log 1000 = log N + 3; и т. д.

Когда к log N мы прибавляем какое-нибудь целое число, то это число мы может всегда прибавлять к характеристике, а не к мантиссе.

Так, если log N = 2,7804, то 2,7804 + 1 =3,7804; 2,7804 + 2 = 4,7801 и т. п.;

или если log N = 3 ,5649, то 3 ,5649 + 1 = 2 ,5649; 3 ,5649 + 2 = 1 ,5649, и т. п.

От умножения числа на 10, 100, 1000,.., вообще на 1 с нулями, мантисса логарифма не изменяется, а характеристика увеличивается на столько единиц, сколько нулей во множителе .

Подобно этому, приняв во внимание, что логарифм частного равен логарифму делимого без логарифма делителя, мы получим:

log N / 10 = log N- log 10 = log N -1;

log N / 100 = log N- log 100 = log N -2;

log N / 1000 = log N- log 1000 = log N -3; и т. п.

Если условимся при вычитании целого числа из логарифма вычитать это целое число всегда из характеристики, а мантиссу оставлять без изменения, то можно сказать:

От деления числа на 1 с нулями мантисса логарифма не изменяется, а характеристика уменьшается на столько единиц, сколько нулей в делителе.

276. Следствия. Из свойства (е ) можно вывести следующие два следствия:

а) Мантисса логарифма десятичного числа не изменяется от перенесения в числе запятой , потому что перенесение запятой равносильно умножению или делению на 10, 100, 1000 и т. д. Таким образом, логарифмы чисел:

0,00423, 0,0423, 4,23, 423

отличаются только характеристиками, но не мантиссами (при условии, что все мантиссы положительны).

б) Мантиссы чисел, имеющих одну и ту же значащую часть, но отличающихся только нулями на конце, одинаковы: так, логарифмы чисел: 23, 230, 2300, 23 000 отличаются только характеристиками.

Замечание. Из указанных свойств десятичных логарифмов видно, что характеристику логарифма целого числа и десятичной дроби мы можем находить без помощи таблиц (в этом заключается большое удобство десятичных логарифмов); вследствие этого в логарифмических таблицах помещаются только одни мантиссы; кроме того, так как нахождение логарифмов дробей сводится к нахождению логарифмов целых чисел (логарифм дроби = логарифму числителя без логарифма знаменателя), то в таблицах помещаются мантиссы логарифмов только целых чисел.

Глава третья.

Устройство и употребление четырехзначных таблиц.

277. Системы логарифмов. Системою логарифмов называется совокупность логарифмов, вычисленных для ряда последовательных целых чисел по одному и тому же основанию. Употребительны две системы: система обыкновенных или десятичных логарифмов, в которых за основание взято число 10 , и система так называемых натуральных логарифмов, в которых за основание (по некоторым причинам, которые уясняются в других отделах математики) взято иррациональное число 2,7182818 ... Для вычислений употребляются десятичные логарифмы, вследствие тех удобств, которые были нами указаны, когда мы перечисляли свойства таких логарифмов.

Натуральные логарифмы называются также Неперовыми по имени изобретателя логарифмов, шотландского математика Непера (1550-1617 гг.), а десятичные логарифмы - Бригговыми по имени профессора Бригга (современника и друга Непера), впервые составившего таблицы этих логарифмов .

278. Преобразование отрицательного логарифма в такой, у которого мантисса положительна, и обратное преобразование. Мы видели, что логарифмы чисел, меньших 1, отрицательны. Значит, они состоят из отрицательной характеристики и отрицательной мантиссы. Такие логарифмы всегда можно преобразовать так, что у них мантисса будет положительная, а характеристика останется отрицательной. Для этого достаточно прибавить к мантиссе положительную единицу, а к характеристике - отрицательную (от чего, конечно, величина логарифма не изменится).

Если, напр., мы имеем логарифм - 2,0873 , то можно написать:

- 2,0873 = - 2 - 1 + 1 - 0,0873 = - (2 + 1) + (1 - 0,0873) = - 3 + 0,9127,

или сокращенно:

Обратно, всякий логарифм с отрицательной характеристикой и положительной мантиссой можно превратить в отрицательный. Для этого достаточно к положительной мантиссе приложить отрицательную единицу, а к отрицательной характеристике - положительную : так, можно написать:

279. Описание четырехзначных таблиц. Для решения большинства практических задач вполне достаточны четырехзначные таблицы, обращение с которыми весьма просто . Таблицы эти (с надписью на верху их „логарифмы") помещены в конце этой книги, а небольшая часть их (для объяснения расположения) напечатана на этой странице. В них содержатся мантиссы

Логарифмы.

логарифмов всех целых чисел от 1 до 9999 включительно, вычисленные с четырьмя десятичными знаками, причем последний из этих знаков увеличен на 1 во всех тех случаях, когда 5-й десятичный знак должен был бы оказаться 5 или более 5; следовательно, 4-значные таблицы дают приближенные мантиссы с точностью до 1 / 2 десятитысячной доли (с недостатком или с избытком).

Так как характеристику логарифма целого числа или десятичной дроби мы можем, на основании свойств десятичных логарифмов, проставить непосредственно, то из таблиц мы должны взять только мантиссы; при этом надо вспомнить, что положение запятой в десятичном числе, а также число нулей, стоящих в конце числа, не имеют влияния на величину мантиссы. Поэтому при нахождении мантиссы по данному числу мы отбрасываем в этом числе запятую, а также и нули на конце его, если таковые есть, и находим мантиссу образовавшегося после этого целого числа. При этом могут представиться следующие случаи.

1) Целое число состоит из 3-х цифр. Напр., пусть надо найти мантиссу логарифма числа 536. Первые две цифры этого числа, т. е. 53, находим в таблицах в первом слева вертикальном столбце (см. таблицу). Найдя число 53, продвигаемся от него по горизонтальной строке вправо до пересечения этой строчки с вертикальным столбцом, проходящим через ту из цифр 0, 1, 2, 3,... 9, поставленных наверху (и внизу) таблицы, которая представляет собою 3-ю цифру данного числа, т. е. в нашем примере цифру 6. В пересечении получим мантиссу 7292 (т. е. 0,7292), принадлежащую логарифму числа 536. Подобно этому для числа 508 найдем мантиссу 0,7059, для числа 500 найдем 0,6990 и т. п.

2) Целое число состоит из 2-х или из 1-й цифры. Тогда мысленно приписываем к этому числу один или два нуля и находим мантиссу для образовавшегося таким образом трехзначного числа. Напр., к числу 51 приписываем один нуль, от чего получаем 510 и находим мантиссу 7070; к числу 5 приписываем 2 нуля и находим мантиссу 6990 и т. д.

3) Целое число выражается 4 цифрами. Напр., надо найти мантиссу log 5436. Тогда сначала находим в таблицах, как было сейчас указано, мантиссу для числа, изображенного первыми 3-мя цифрами данного числа, т. е. для 543 (эта мантисса будет 7348); затем продвигаемся от найденной мантиссы по горизонтальной строке направо (в правую часть таблицы, расположенную за жирной вертикальной чертой) до пересечения с вертикальным столбцом, проходящим через ту из цифр: 1, 2 3,... 9, стоящих на верху (и в низу) этой части таблицы, которая представляет собою 4-ю цифру данного числа, т. е. в нашем примере цифру 6. В пересечении находим поправку (число 5), которую надо приложить в уме к мантиссе 7348, чтобы получить мантиссу числа 5436; мы получим таким образом мантиссу 0,7353.

4) Целое число выражается 5-ю или более цифрами. Тогда отбрасываем все цифры, кроме первых 4-х, и берем приближенное четырехзначное число, причем последнюю цифру этого числа увеличиваем на 1 в том. случае, когда отбрасываемая 5-я цифра числа есть 5 или больше 5. Так, вместо 57842 мы берем 5784, вместо 30257 берем 3026, вместо 583263 берем 5833 и т. и. Для этого округленного четырехзначного числа находим мантиссу так, как было сейчас объяснено.

Руководствуясь этими указаниями, найдем для примера логарифмы следующих чисел:

36,5; 804,7; 0,26; 0,00345; 7,2634; 3456,06.

Прежде всего, не обращаясь пока к таблицам, проставим одни характеристики, оставляя место для мантисс, которые выпишем после:

log 36,5 = 1,.... log 0,00345 = 3 ,....

log 804,7 = 2,.... log 7,2634 = 0,....

log 0,26 = 1 ,.... log 3456,86 = 3,....

log 36,5 = 1,5623; log 0,00345 = 3 ,5378;

log 804,7 = 2,9057; log 7,2634 = 0,8611;

log 0,26 = 1 ,4150; log 3456,86 = 3,5387.

280. Замечание . В некоторых четырехзначных таблицах (напр, в таблицах В. Лорченко и Н. Оглоблина, С. Глазенапа, Н. Каменьщикова ) поправки на 4-ю цифру данного числа не помещены. Имея дело с такими таблицами, приходится поправки эти находить при помощи простого вычисления, которое можно выполнять на основании следующей истины: если числа превосходят 100, а разности между ними меньше 1, то без чувствительной погрешности можно принять, что разности между логарифмами пропорциональны разностям между соответствующими числами . Пусть, напр., надо найти мантиссу, соответствующую числу 5367. Мантисса эта, конечно, та же самая, что и для числа 536,7. Находим в таблицах для числа 536 мантиссу 7292. Сравнивая эту мантиссу с соседней вправо мантиссой 7300, соответствующей числу 537, мы замечаем, что если число 536 увеличится на 1, то мантисса его увеличится на 8 десятитысячных (8 есть так называемая табличная разность между двумя соседними мантиссами); если же число 536 увеличится на 0,7, то мантисса его увеличится не на 8 десятитысячных, а на некоторое меньшее число х десятитысячных, которое, согласно допущенной пропорциональности, должно удовлетворять пропорции:

х : 8 = 0,7: 1; откуда х = 8 07 = 5,6,

что по округлении составляет 6 десятитысячных. Значит, мантисса для числа 536,7 (и следовательно, для числа 5367) будет: 7292 + 6 = 7298.

Заметим, что нахождение по двум рядом стоящим в таблицах числам промежуточного числа называется интерполированием. Интерполирование, описанное здесь, называется пропорциональным , так как оно основано на допущении, что изменение логарифма пропорционально изменению числа. Оно называется также линейным , так как предполагает, что графически изменение логарифмической функции выражается прямою линией.

281. Предел погрешности приближенного логарифма. Если число, которого логарифм отыскивается, есть число т о ч н о е, то за предел погрешности его логарифма, найденного но 4-значным таблицам, можно, как мы говорили в , принять 1 / 2 десятитысячной доли. Если же данное число не точное , то к этому пределу погрешности надо еще добавить предел другой погрешности, происходящей от неточности самого числа. Доказано (мы опускаем это доказательство), что за такой предел можно принять произведение

a (d +1) десятитысячных.,

в котором а есть предел погрешности самого неточного числа в предположении, что в его целой части взяты 3 цифры , a d табличная разность мантисс, соответствующих двум последовательным трехзначным числам, между которыми заключается данное неточное число. Таким образом предел окончательной погрешности логарифма выразится тогда формулой:

1 / 2 + a (d +1) десятитысячных

Пример . Найти log π , принимая за π приближенное число 3,14, точное до 1 / 2 сотой.

Перенеся в числе 3,14 запятую после 3-й цифры, считая слева, мы получим трехзначное число 314, точное до 1 / 2 единицы; значит, предел погрешности неточного числа, т. е. то, что мы обозначили буквой а , есгь 1 / 2 Из таблиц находим:

log 3,14 = 0,4969.

Табличная разность d между мантиссами чисел 314 и 315 равна 14, поэтому погрешность найденного логарифма будет менее

1 / 2 + 1 / 2 (14 +1) = 8 десятитысячных .

Так как о логарифме 0,4969 мы не знаем, с недостатком ли он или с избытком, то можем только ручаться, что точный логарифм π заключается между 0,4969 - 0,0008 и 0,4969 + 0,0008, т. е. 0,4961 < log π < 0,4977.

282. Найти число по данному логарифму . Для нахождения числа по данному логарифму могут служить те же таблицы, по которым отыскиваются мантиссы данных чисел; но удобнее пользоваться другими таблицами, в которых помещены так называемые антилогарифмы, т. е. числа, соответствующие данным мантиссам. Таблицы эти, обозначенные надписью сверху „антилогарифмы", помещены в конце этой книги вслед за таблицами логарифмов; небольшая часть их помещена на этой странице (для объяснения).

Пусть дана 4-значная мантисса 2863 (на характеристику не обращаем внимания) и требуется найти соответствующее целое число. Тогда, имея таблицы антилогарифмов, надо пользоваться ими совершенно так же, как было раньше объяснено для нахождения мантисс по данному числу, а именно: первые 2 цифры мантиссы мы находим в первом слева столбце. Затем продвигаемся от этих цифр по горизонтальной строке вправо до пересечения с вертикальным столбцом, идущим от 3-й цифры мантиссы, которую надо искать в верхней строке (или в нижней). В пересечении находим четырехзначное число 1932, соответствующее мантиссе 286. Затем от этого числа продвигаемся дальше по горизонтальной строке направо до пересечения с вертикальным столбцом, идущим от 4-й цифры мантиссы, которую надо найти наверху (или внизу) среди поставленных там цифр 1, 2, 3,... 9. В пересечении мы находим поправку 1, которую надо приложить (в уме) к найденному раньше числу 1032, чтобы получить число, соответствующее мантиссе 2863.

Таким образом, число это будет 1933. После этого, обращая внимание на характеристику, надо в числе 1933 поставить занятую на надлежащем месте. Например:

если log x = 3,2863, то х = 1933,

log x = 1,2863, „ х = 19,33,

, log x = 0,2&63, „ х = 1,933,

log x = 2 ,2863, „ х = 0,01933

Вот еще примеры:

log x = 0,2287, х = 1,693,

log x = 1 ,7635, х = 0,5801,

log x = 3,5029, х = 3184,

log x = 2 ,0436, х = 0,01106.

Если в мантиссе указано 5 или более цифр, то берем только первые 4 цифры, отбрасывая остальные (и увеличивая 4-ю цифру на 1, если 5-я цифра есть пять или более). Напр., вместо мантиссы 35478 берем 3548, вместо 47562 берем 4756.

283. Замечание. Поправку на 4-ю и следующие цифры мантиссы можно находить и посредством интерполирования. Так, если мантисса будет 84357, то, найдя число 6966, соответствущее мантиссе 843 мы можем рассуждать далее так:: если мантисса увеличивается на 1 (тысячную), т. е. сделаетоя 844, то число, как видно из таблиц, увеличится на 16 единиц; если же мантисса увеличится не на 1 (тысячную), а на 0,57 (тысячной), то число увеличится на х единиц, причем х должно удовлетворять пропорции:

х : 16 = 0,57: 1, откуда х = 16 0,57 = 9,12.

Значит, искомое число будет 6966+ 9,12 = 6975,12 или (ограничиваясь только четырьмя цифрами) 6975.

284. Предел погрешности найденного числа. Доказано, что в том случае, когда в найденном числе запятая стоит после 3-й слева цифры, т. е. когда характеристика логарифма есть 2, за предел погрешности можно принять сумму

где а есть предел погрешности логарифма (выраженный в десятитысячных долях), по которому отыскивалось число, и d - разность между мантиссами двух трехзначных последовательных чисел, между которыми заключается найденное число (с запятой после 3-й цифры слева). Когда характеристика будет не 2, а какая-нибудь иная, то в найденном числе запятую придется перенести влево или вправо, т. е. разделить или умножить число на некоторую степень 10. При этом погрешность результата также разделится или умножится на ту же степень 10.

Пусть, например, мы отыскиваем число по логарифму 1,5950 , о котором известно, чго он точен до 3 десятитысячных; значит, тогда а = 3 . Число, соответствующее этому логарифму, найденное по таблице антилогарифмов, есть 39,36 . Перенеся запятую после 3-й цифры слева, будем иметь число 393,6 , заключающееся между 393 и 394 . Из таблиц логарифмов видим, что разность между мантиссами, соответствующими этим двум числам, составляет 11 десятитысячных; значит d = 11 . Погрешность числа 393,6 будет меньше

Значит, погрешность числа 39,36 будет меньше 0,05 .

285. Действия над логарифмами с отрицательными характеристиками. Сложение и вычитание логарифмов не представляют никаких затруднений, как это видно из следующих примеров:

Не представляет никаких затруднений также и умножение логарифма на положительное число, напр.:

В последнем примере отдельно умножена положительная мантисса на 34, затем отрицательная характеристика на 34.

Если логарифм о отрицательной характеристикой и положительной мантиссой умножается на отрицательное число, то поступают двояко: или предварительно данный логарифм обращают в отрицательный, или же умножают отдельно мантиссу и характеристику и результаты соединяют вместе, например:

3 ,5632 (- 4) = - 2,4368 (- 4) = 9,7472;

3 ,5632 (- 4) = + 12 - 2,2528 = 9,7472.

При делении могут представиться два случая: 1) отрицательная характеристика делится и 2) не делится на делитель. В первом случае отдельно делят характеристику и мантиссу:

10 ,3784: 5 = 2 ,0757.

Во втором случае прибавляют к характеристике столько отрицательных единиц, чтобы образовавшееся число делилось на делитель; к мантиссе прибавляют столько же положительных единиц:

3 ,7608: 8 = (- 8 + 5,7608) : 8 = 1 ,7201.

Это преобразование надо совершать в уме, так что действие располагается так:

286. Замена вычитаемых логарифмов слагаемыми. При вычислении какого-нибудь сложного выражения помощью логарифмов приходится некоторые логарифмы складывать, другие вычитать; в таком случае, при обыкновенном способе совершения действий, находят отдельно сумму слагаемых логарифмов, потом сумму вычитаемых и из первой суммы вычитают вторую. Напр., если имеем:

log х = 2,7305 - 2 ,0740 + 3 ,5464 - 8,3589 ,

то обыкновенное выполнение действий расположится так:

Есть однако возможность заменить вычитание сложением. Так:

Теперь можно расположить вычисление так:

287. Примеры вычислений.

Пример 1 . Вычислить выражение:

если А = 0,8216, В = 0,04826, С= 0,005127 и D = 7,246.

Логарифмируем данное выражение:

log х = 1 / 3 log A + 4 log В - 3 log С - 1 / 3 log D

Теперь, для избежания излишней потери времени и для уменьшения возможности ошибок, прежде всего расположим все вычисления, не исполняя пока их и не обращаясь, следовательно, к таблицам:

После этого берем таблицы и проставляем логарифмы на оставленных свободных местах:

Прeдел погрешности. Сначала найдем предел погрешности числа x 1 = 194,5 , равный:

Значит, прежде всего надо найти а , т. е. предел погрешности приближенного логарифма, выраженный в десятитысячных долях. Допустим, что данные числа А, В, С и D все точные. Тогда погрешности в отдельных логарифмах будут следующие (в десятитысячных долях):

в logА .......... 1 / 2

в 1 / 3 log A ......... 1 / 6 + 1 / 2 = 2 / 3

( 1 / 2 прибавлена потому, что при делении на 3 логарифма 1,9146 мы округлили частное, отбросив 5-ю цифру его, и, следовательно, сделали еще ошибку,меньшую 1 / 2 десятитысячной).

Теперь находим предел погрешности логарифма:

а = 2 / 3 + 2 + 3 / 2 + 1 / 6 = 4 1 / 3 (десятитысячных).

Определим далее d . Так как x 1 = 194,5 , то 2 целых последовательных числа, между которыми заключается x 1 будут 194 и 195 . Табличная разность d между мантиссами, соответствующими этим числам, равна 22 . Значит, предел погрешности числа x 1 есть:

Так как x = x 1 : 10, то предел погрешности в числе x равен 0,3:10 = 0,03 . Таким образом, найденное нами число 19,45 разнится от точного числа менее, чем на 0,03 . Так как мы не знаем, с недостатком или с избытком найдено наше приближение, то можем только ручаться, что

19,45 + 0,03 > х > 19,45 - 0,03 , т. е.

19,48 > х > 19,42 ,

и потому, если примем х =19,4 , то будем иметь приближение с недостатком с точностью до 0,1.

Пример 2. Вычислить:

х = (- 2,31) 3 5 √72 = - (2,31) 3 5 √72 .

Так как отрицательные числа не имеют логарифмов, то предварительно находим:

х" = (2,31) 3 5 √72

по разложению:

log х" = 3 log 2,31 + 1 / 5 log72 .

После вычисления окажется:

х" = 28,99 ;

следовательно,

x = - 28,99 .

Пример 3 . Вычислить:

Сплошного логарифмирования здесь применить нельзя, так как под знаком корня стоит с у м м а. В подобных случаях вычисляют формулу по частям .

Сначала находим N = 5 √8 , потом N 1 = 4 √3 ; далее простым сложением определяем N + N 1 , и, наконец, вычисляем 3 √N + N 1 ; окажется:

N = 1,514 , N 1 = 1,316 ; N + N 1 = 2,830 .

log x = log 3 √2,830 = 1 / 3 log 2,830 = 0,1506 ;

x = 1,415 .

Глава четвертая.

Показательные и логарифмические уравнения.

288. Показательными уравнениями называются такие, в которых неизвестное входит в показатель степени, а логарифмическими - такие, в которых неизвестное входит под знаком log . Такие уравнения могут быть разрешаемы только в частных случаях, причем приходится основываться на свойствах логарифмов и на том начале, что если числа равны, то равны и их логарифмы, и, обратно, если логарифмы равны, то равны и соответствующие им числа.

Пример 1. Решить уравнение: 2 x = 1024 .

Логарифмируем обе части уравнения:

Пример 2. Решить уравнение: a 2x - a x = 1 . Положив a x = у , получим квадратное уравнение:

y 2 - у - 1 = 0 ,

Так как 1-√5 < 0 , то последнее уравнение невозможно (функция a x всегда есть число положительное), а первое дает:

Пример 3. Решить уравнение:

log (а + x ) + log (b + х ) = log (с + x ) .

Уравнение можно написать так:

log [(а + x ) (b + х )] = log (с + x ) .

Из равенства логарифмов заключаем о равенстве чисел:

(а + x ) (b + х ) = с + x .

Это есть квадратное уравнение, решение которого не представляет затруднений.

Глава пятая.

Сложные проценты, срочные уплаты и срочные взносы.

289. Основная задача на сложные проценты. В какую сумму обратится капитал а рублей, отданный в рост по р сложных процентов, по прошествии t лет (t - целое число)?

Говорят, что капитал отдан по сложным процентам, если принимаются во внимание так называемые „проценты на проценты", т. е. если причитающиеся на капитал процентные деньги присоединяются в конце каждого года к капиталу для наращения их процентами в следующие годы.

Каждый рубль капитала, отданного по р %, в течение одного года принесет прибыли p / 100 рубля, и, следовательно, каждый рубль капитала через 1 год обратится в 1 + p / 100 рубля (напр., если капитал отдан по 5 % , то каждый рубль его через год обратится в 1 + 5 / 100 , т. е. в 1,05 рубля).

Обозначив для краткости дробь p / 100 одною буквою, напр, r , можем сказать, что каждый рубль капитала через год обратится в 1 + r рублей; следовательно, а рублей обратятся через 1 год в а (1 + r ) руб. Еще через год, т. е. через 2 года от начала роста, каждый рубль из этих а (1 + r ) руб. обратится снова в 1 + r руб.; значит, весь капитал обратится в а (1 + r ) 2 руб. Таким же образом найдем, что через три года капитал будет а (1 + r ) 3 , через четыре года будет а (1 + r ) 4 ,... вообще через t лет, если t есть целое число, он обратится в а (1 + r ) t руб. Таким образом, обозначив через А окончательный капитал, будем иметь следующую формулу сложных процентов:

А = а (1 + r ) t где r = p / 100 .

Пример. Пусть a =2 300 руб., p = 4, t =20 лет; тогда формула дает:

r = 4 / 100 = 0,04 ; А = 2 300 (1,04) 20 .

Чтобы вычислить А , применяем логарифмы:

log a = log 2 300 + 20 log 1,04 = 3,3617 + 20 0,0170 = 3,3617+0,3400 = 3,7017.

A = 5031 рубль.

Замечание. В этом примере нам пришлось log 1,04 умножить на 20 . Так как число 0,0170 есть приближенное значение log 1,04 с точностью до 1 / 2 десятитысячной доли, то произведение этого числа на 20 будет точно только до 1 / 2 20, т. е. до 10 десятитысячных =1 тысячной. Поэтому в сумме 3,7017 мы не можем ручаться не только за цифру десятитысячных, но и за цифру тысячных. Чтобы в подобных случаях можно было получить большую точность, лучше для числа 1 + r брать логарифмы не 4-значные, а с большим числом цифр, напр. 7-значные. Для этой цели мы приводим здесь небольшую табличку, в которой выписаны 7-значные логарифмы для наиболее употребительных значений р .

290. Основная задача на срочные уплаты. Некто занял а рублей по р % с условием погасить долг, вместе с причитающимися на него процентами, в t лет, внося в конце каждого года одну и ту же сумму. Какова должна быть эта сумма?

Сумма x , вносимая ежегодно при таких условиях, называется срочною уплатою. Обозначим опять буквою r ежегодные процентные деньги с 1 руб., т. е. число p / 100 . Тогда к концу первого года долг а возрастает до а (1 + r ), аза уплатою х рублей он сделается а (1 + r )-х .

К концу второго года каждый рубль этой суммы снова обратится в 1 + r рублей, и потому долг будет [а (1 + r )-х ](1 + r ) = а (1 + r ) 2 - x (1 + r ), а за уплатою x рублей окажется: а (1 + r ) 2 - x (1 + r ) - х . Таким же образом убедимся, что к концу 3-го года долг будет

а (1 + r ) 3 - x (1 + r ) 2 - x (1 + r ) - x ,

и вообще и концу t -го года он окажется:

а (1 + r ) t - x (1 + r ) t -1 - x (1 + r ) t -2 ... - x (1 + r ) - x , или

а (1 + r ) t - x [ 1 + (1 + r ) + (1 + r ) 2 + ...+ (1 + r ) t -2 + (1 + r ) t -1 ]

Многочлен, стоящий внутри скобок , представляет сумму членов геометрической прогрессии; у которой первый член есть 1 , последний (1 + r ) t -1 , а знаменатель (1 + r ). По формуле для суммы членов геометрической прогрессии (отдел 10 глава 3 § 249) находим:

и величина долга после t -ой уплаты будет:

По условию задачи, долг в конце t -го года должен равняться 0 ; поэтому:

откуда

При вычислении этой формулы срочных уплат помощью логарифмов мы должны сначала найти вспомогательное число N = (1 + r ) t по логарифму: log N= t log (1 + r ) ; найдя N , вычтем из него 1, тогда получим знаменатель формулы для х, после чего вторичным логарифмированием найдем:

log х = log a + log N + log r - log (N - 1) .

291. Основная задача на срочные взносы. Некто вносит в банк в начале каждого года одну и ту же сумму а руб. Определить, какой капитал образуется из этих взносов по прошествии t лет, если банк платит по р сложных процентов.

Обозначив через r ежегодные процентные деньги с 1 рубля, т. е. p / 100 , рассуждаем так: к концу первого года капитал будет а (1 + r );

в начале 2-го года к этой сумме прибавится а рублей; значит, в это время капитал окажется а (1 + r ) + a . К концу 2-го года он будет а (1 + r ) 2 + а (1 + r );

в начале 3-го года снова вносится а рублей; значит, в это время капитал будет а (1 + r ) 2 + а (1 + r ) + а ; к концу 3-го он окажется а (1 + r ) 3 + а (1 + r ) 2 + а (1 + r ) Продолжая эти рассуждения далее, найдем, чтo к концу t -го года искомый капитал A будет:

Такова формула срочных взносов, делаемых в начале каждого года.

Ту же формулу можно получить и таким рассуждением:. первый взнос в а рублей, находясь в банке t лет, обратится, согласно формуле сложных процентов, в а (1 + r ) t руб. Второй взнос, находясь в банке одним годом меньше, т. е. t - 1 лет, обратится в а (1 + r ) t- 1 руб. Подобно этому третий взнос даст а (1 + r ) t- 2 и т. д., и, наконец, последний взнос, находясь в банке только 1 год, обратится в а (1 + r ) руб. Значит, окончательный капитал A руб. будет:

A = а (1 + r ) t + а (1 + r ) t- 1 + а (1 + r ) t- 2 + . . . + а (1 + r ),

что, после упрощения, дает найденную выше формулу.

При вычислении помощью логарифмов этой формулы надо поступить так же, как и при вычислении формулы срочных уплат, т. е. сначала найти число N = (1 + r ) t по его логарифму: log N= t log (1 + r ), затем число N- 1 и уже тогда логарифмировить формулу:

log A = log a + log (1 + r ) + log (N - 1) - 1оg r

Замечание. Если бы срочный взнос в а руб. производился не в начале, а в конце каждого года (как, напр., вносится срочная уплата х для погашения долга), то, рассуждая подобно предыдущему, найдем, что к концу t -го года искомый капитал А" руб. будет (считая в том числе и последний взнос а руб., не приносящий процентов):

A" = а (1 + r ) t- 1 + а (1 + r ) t- 2 + . . . + а (1 + r ) + а

что равно:

т. е. А" оказывается в (1 + r ) pаз менее А , что и надо было ожидать, так как каждый рубль капитала А" лежит в банке годом меньше, чем соответствующий рубль капитала А .

  1. Проверьте, не стоят ли под знаком логарифма отрицательные числа или единица. Данный метод применим к выражениям вида log b ⁡ (x) log b ⁡ (a) {\displaystyle {\frac {\log _{b}(x)}{\log _{b}(a)}}} . Однако он не годится для некоторых особых случаев:

    • Логарифм отрицательного числа не определен при любом основании (например, log ⁡ (− 3) {\displaystyle \log(-3)} или log 4 ⁡ (− 5) {\displaystyle \log _{4}(-5)} ). В этом случае напишите "нет решения".
    • Логарифм нуля по любому основанию также не определен. Если вам попался ln ⁡ (0) {\displaystyle \ln(0)} , запишите "нет решения".
    • Логарифм единицы по любому основанию ( log ⁡ (1) {\displaystyle \log(1)} ) всегда равен нулю, поскольку x 0 = 1 {\displaystyle x^{0}=1} для всех значений x . Запишите вместо такого логарифма 1 и не используйте приведенный ниже метод.
    • Если логарифмы имеют разные основания, например l o g 3 (x) l o g 4 (a) {\displaystyle {\frac {log_{3}(x)}{log_{4}(a)}}} , и не сводятся к целым числам, значение выражения нельзя найти вручную.
  2. Преобразуйте выражение в один логарифм. Если выражение не относится к приведенным выше особым случаям, его можно представить в виде одного логарифма. Используйте для этого следующую формулу: log b ⁡ (x) log b ⁡ (a) = log a ⁡ (x) {\displaystyle {\frac {\log _{b}(x)}{\log _{b}(a)}}=\log _{a}(x)} .

    • Пример 1: рассмотрим выражение log ⁡ 16 log ⁡ 2 {\displaystyle {\frac {\log {16}}{\log {2}}}} .
      Для начала представим выражение в виде одного логарифма с помощью приведенной выше формулы: log ⁡ 16 log ⁡ 2 = log 2 ⁡ (16) {\displaystyle {\frac {\log {16}}{\log {2}}}=\log _{2}(16)} .
    • Эта формула "замены основания" логарифма выводится из основных свойств логарифмов.
  3. При возможности вычислите значение выражения вручную. Чтобы найти log a ⁡ (x) {\displaystyle \log _{a}(x)} , представьте себе выражение " a ? = x {\displaystyle a^{?}=x} ", то есть задайтесь следующим вопросом: "В какую степень необходимо возвести a , чтобы получить x ?". Для ответа на этот вопрос может потребоваться калькулятор, но если вам повезет, вы сможете найти его вручную.

    • Пример 1 (продолжение): Перепишите в виде 2 ? = 16 {\displaystyle 2^{?}=16} . Необходимо найти, какое число должно стоять вместо знака "?". Это можно сделать методом проб и ошибок:
      2 2 = 2 ∗ 2 = 4 {\displaystyle 2^{2}=2*2=4}
      2 3 = 4 ∗ 2 = 8 {\displaystyle 2^{3}=4*2=8}
      2 4 = 8 ∗ 2 = 16 {\displaystyle 2^{4}=8*2=16}
      Итак, искомым числом является 4: log 2 ⁡ (16) {\displaystyle \log _{2}(16)} = 4 .
  4. Оставьте ответ в логарифмической форме, если вам не удается упростить его. Многие логарифмы очень сложно вычислить вручную. В этом случае, чтобы получить точный ответ, вам потребуется калькулятор. Однако если вы решаете задание на уроке, то учителя, скорее всего, удовлетворит ответ в логарифмическом виде. Ниже рассматриваемый метод использован для решения более сложного примера:

    • пример 2: чему равно log 3 ⁡ (58) log 3 ⁡ (7) {\displaystyle {\frac {\log _{3}(58)}{\log _{3}(7)}}} ?
    • Преобразуем данное выражение в один логарифм: log 3 ⁡ (58) log 3 ⁡ (7) = log 7 ⁡ (58) {\displaystyle {\frac {\log _{3}(58)}{\log _{3}(7)}}=\log _{7}(58)} . Обратите внимание, что общее для обоих логарифмов основание 3 исчезает; это справедливо для любого основания.
    • Перепишем выражение в виде 7 ? = 58 {\displaystyle 7^{?}=58} и попробуем найти значение?:
      7 2 = 7 ∗ 7 = 49 {\displaystyle 7^{2}=7*7=49}
      7 3 = 49 ∗ 7 = 343 {\displaystyle 7^{3}=49*7=343}
      Поскольку 58 находится между этими двумя числами, не выражается целым числом.
    • Оставляем ответ в логарифмическом виде: log 7 ⁡ (58) {\displaystyle \log _{7}(58)} .

По мере развития общества, усложнения производства развивалась и математика. Движение от простого к сложному. От обычного учёта методом сложения и вычитания, при их многократном повторении, пришли к понятию умножения и деления. Сокращение многократно повторяемой операции умножения стало понятием возведения в степень. Первые таблицы зависимости чисел от основания и числа возведения в степень были составлены ещё в VIII веке индийским математиком Варасена. С них и можно отсчитывать время возникновения логарифмов.

Исторический очерк

Возрождение Европы в XVI веке стимулировало и развитие механики. Требовался большой объем вычисления , связанных с умножением и делением многозначных чисел. Древние таблицы оказали большую услугу. Они позволяли заменять сложные операции на более простые – сложение и вычитание. Большим шагом вперёд стала работа математика Михаэля Штифеля, опубликованная в 1544 году, в которой он реализовал идею многих математиков. Что позволило использовать таблицы не только для степеней в виде простых чисел, но и для произвольных рациональных.

В 1614 году шотландец Джон Непер, развивая эти идеи, впервые ввёл новый термин «логарифм числа». Были составлены новые сложные таблицы для расчёта логарифмов синусов и косинусов, а также тангенсов. Это сильно сократило труд астрономов.

Стали появляться новые таблицы, которые успешно использовались учёными на протяжении трёх веков. Прошло немало времени, прежде чем новая операция в алгебре приобрела свой законченный вид. Было дано определение логарифма, и его свойства были изучены.

Только в XX веке с появлением калькулятора и компьютера человечество отказалось от древних таблиц, успешно работавших на протяжении XIII веков.

Сегодня мы называем логарифмом b по основанию a число x, которое является степенью числа а, чтобы получилось число b. В виде формулы это записывается: x = log a(b).

Например, log 3(9) будет равен 2. Это очевидно, если следовать определению. Если 3 возвести в степень 2, то получим 9.

Так, сформулированное определение ставит только одно ограничение, числа a и b должны быть вещественными.

Разновидности логарифмов

Классическое определение носит название вещественный логарифм и фактически является решением уравнения a x = b. Вариант a = 1 является пограничным и не представляет интереса. Внимание: 1 в любой степени равно 1.

Вещественное значение логарифма определено только при основании и аргументе больше 0, при этом основание не должно равняться 1.

Особое место в области математики играют логарифмы, которые будут называться в зависимости от величины их основания:

Правила и ограничения

Основополагающим свойством логарифмов является правило: логарифм произведения равен логарифмической сумме. log abp = lоg a(b) + log a(p).

Как вариант этого утверждения будет: log с(b/p) = lоg с(b) — log с(p), функция частного равна разности функций.

Из предыдущих двух правил легко видно, что: lоg a(b p) = p * log a(b).

Среди других свойств можно выделить:

Замечание. Не надо делать распространённую ошибку - логарифм суммы не равен сумме логарифмов.

Многие века операция поиска логарифма была довольно трудоёмкой задачей. Математики пользовались известной формулой логарифмической теории разложения на многочлен:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*((x^n)/n), где n - натуральное число больше 1, определяющее точность вычисления.

Логарифмы с другими основаниями вычислялись, используя теорему о переходе от одного основания к другому и свойстве логарифма произведения.

Так как этот способ очень трудоёмкий и при решении практических задач трудноосуществим, то использовали заранее составленные таблицы логарифмов, что значительно ускоряло всю работу.

В некоторых случаях использовали специально составленные графики логарифмов, что давало меньшую точность, но значительно ускоряло поиск нужного значения. Кривая функции y = log a(x), построенная по нескольким точкам, позволяет с помощью обычной линейки находить значения функции в любой другой точке. Инженеры длительное время для этих целей использовали так называемую миллиметровую бумагу.

В XVII веке появились первые вспомогательные аналоговые вычислительные условия, которые к XIX веку приобрели законченный вид. Наиболее удачное устройство получило название логарифмическая линейка. При всей простоте устройства, её появление значительно ускорило процесс всех инженерных расчётов, и это переоценить трудно. В настоящее время уже мало кто знаком с этим устройством.

Появление калькуляторов и компьютеров сделало бессмысленным использование любых других устройств.

Уравнения и неравенства

Для решения различных уравнений и неравенств с использованием логарифмов применяются следующие формулы:

  • Переход от одного основания к другому: lоg a(b) = log c(b) / log c(a);
  • Как следствие предыдущего варианта: lоg a(b) = 1 / log b(a).

Для решения неравенств полезно знать:

  • Значение логарифма будет положительным только в том случае, когда основание и аргумент одновременно больше или меньше единицы; если хотя бы одно условие нарушено, значение логарифма будет отрицательным.
  • Если функция логарифма применяется к правой и левой части неравенства, и основание логарифма больше единицы, то знак неравенства сохраняется; в противном случае он меняется.

Примеры задач

Рассмотрим несколько вариантов применения логарифмов и их свойства. Примеры с решением уравнений:

Рассмотрим вариант размещения логарифма в степени:

  • Задача 3. Вычислить 25^log 5(3). Решение: в условиях задачи запись аналогична следующей (5^2)^log5(3) или 5^(2 * log 5(3)). Запишем по-другому: 5^log 5(3*2), или квадрат числа в качестве аргумента функции можно записать как квадрат самой функции (5^log 5(3))^2. Используя свойства логарифмов, это выражение равно 3^2. Ответ: в результате вычисления получаем 9.

Практическое применение

Являясь исключительно математическим инструментом, кажется далёким от реальной жизни, что логарифм неожиданно приобрёл большое значение для описания объектов реального мира. Трудно найти науку, где его не применяют. Это в полной мере относится не только к естественным, но и гуманитарным областям знаний.

Логарифмические зависимости

Приведём несколько примеров числовых зависимостей:

Механика и физика

Исторически механика и физика всегда развивались с использованием математических методов исследования и одновременно служили стимулом для развития математики, в том числе логарифмов. Теория большинства законов физики написана языком математики. Приведём только два примера описания физических законов с использованием логарифма.

Решать задачу расчёта такой сложной величины как скорость ракеты можно, применяя формулу Циолковского, которая положила начало теории освоения космоса:

V = I * ln (M1/M2), где

  • V – конечная скорость летательного аппарата.
  • I – удельный импульс двигателя.
  • M 1 – начальная масса ракеты.
  • M 2 – конечная масса.

Другой важный пример - это использование в формуле другого великого учёного Макса Планка, которая служит для оценки равновесного состояния в термодинамике.

S = k * ln (Ω), где

  • S – термодинамическое свойство.
  • k – постоянная Больцмана.
  • Ω – статистический вес разных состояний.

Химия

Менее очевидным будет использования формул в химии, содержащих отношение логарифмов. Приведём тоже только два примера:

  • Уравнение Нернста, условие окислительно-восстановительного потенциала среды по отношению к активности веществ и константой равновесия.
  • Расчёт таких констант, как показатель автопролиза и кислотность раствора тоже не обходятся без нашей функции.

Психология и биология

И уж совсем непонятно при чём здесь психология. Оказывается, сила ощущения хорошо описывается этой функцией как обратное отношение значения интенсивности раздражителя к нижнему значению интенсивности.

После вышеприведённых примеров уже не удивляет, что и в биологии широко используется тема логарифмов. Про биологические формы, соответствующие логарифмическим спиралям, можно писать целые тома.

Другие области

Кажется, невозможно существование мира без связи с этой функцией, и она правит всеми законами. Особенно, когда законы природы связаны с геометрической прогрессией. Стоит обратиться к сайту МатПрофи, и таких примеров найдётся множество в следующих сферах деятельности:

Список может быть бесконечным. Освоив основные закономерности этой функции, можно окунуться в мир бесконечной мудрости.