Как устроен оптоволоконный кабель. Что такое и для чего нужен оптический шнур

И нтернет по оптоволоконному кабелю является последним изменением способа передачи данных по всему миру. Это намного быстрее, чем обычный кабель, быстрее, чем dial-up, и может переносить большие объемы данных, часто довольно легко достигая нескольких терабайтов передачи данных.

До оптоволокна: DSL и кабель

Цифровая абонентская линия (DSL) использовала существующие телефонные линии для передачи данных, которые обычно делались из меди. DSL медленный, старый, и по большей части был поэтапно отменен в пользу кабеля, но он остается в некоторых сельских районах. Средняя скорость для DSL составляет около 2 Мбит/с.

Кабельный интернет использует коаксиальный кабель, также изготовленный из меди, и, как правило, поставляется с такими же кабелями, которые используются для управления телевизионной сетью. Вот почему многие интернет-провайдеры предлагают в комплекте планы с подпиской на телевидение и доступом в Интернет. Средняя скорость для кабеля варьируется, но колеблется от 20 Мбит/с до 100 Мбит/с.

Оптоволокно

Волоконно-оптические кабели используют небольшие стеклянные волокна для передачи данных с использованием импульсов света. Свет распространяется так же, как и электричество через медный провод, но преимущество заключается в том, что волоконные кабели могут одновременно передавать сразу несколько сигналов. Они невероятно малы, поэтому их часто объединяют в более крупные кабели под названием «волоконно-оптические магистральные кабели», каждая из которых содержит несколько волоконных линий. Волоконные кабели содержат огромное количество данных, а средняя скорость, которую Вы увидите у себя дома, составляет около 1 Гбит/с (часто называемый «гигабитный интернет»).

Волоконные магистральные кабели образуют основную часть современного Интернета, и Вы увидите их преимущества, даже если у Вас нет «волоконного интернета». Это связано с тем, что точки обмена через Интернет (IXP) — коммутационные и маршрутизационные станции которые соединяют Ваш дом с остальной частью мира — используют волоконно-оптические магистральные линии для подключения к другим IXP.

Но когда придет время соединить все дома в городе с Вашим местным IXP (термин, который обычно называют «последней милей»), Ваш провайдер обычно будет использовать традиционный коаксиальный кабель для Вашего дома. Этот вариант становится узким местом для Вашей интернет-скорости. Когда кто-то говорит, что у них есть «оптоволоконный интернет», они имеют в виду, что подключение из их дома к IXP также использует волокно, исключая ограничение скорости медного кабеля.

Ограничения оптоволокна

Есть причина, по которой оптоволоконный интернет не является общедоступным. Волокно намного дороже для запуска и не оправдывает затраты, когда кабельные линии часто уже доступны. Для большинства людей скорость 20-100 Мбит/с, которую они получают на кабеле, достаточна, так как большинство загрузок из Интернета в любом случае не превысят этого соединения.

И хотя волокно, безусловно, лучше, чем медь, Вы не увидите увеличения фактической скорости загрузки из-за ограничений на сервере, с которого Вы загружаете. Такое приложение, как Steam, загружающее игру на 10 ГБ, похоже, потребуется всего несколько секунд на волоконно-оптическом соединении 1000 Мбит/с, но на самом деле Вы получите максимальную скорость 50 Мбит/с от серверов Steam.

Волоконная оптика, как термин, это учение о распространении светового потока в оптическом волокне. Как продукция, волоконная оптика – это все то, что имеет в составе оптико-волоконный элемент.

Оптическое волокно – это изготовленная из кварцевого стекла тонкая жила, внутри которой течет световой луч, не покидая ее пределов. Сегодня существует оптоволокно с пластиковым сердечником, характеристики которого близки к натуральному кварцу. Смысл один – световой пучок отражается от стенок жилы и сохраняет свое информационное содержание вне зависимости от дальности передачи данных. Именно оптоволокно – самый лучший материал трансляции цифрового сигнала без затухания на дальние расстояния.

Появление и развитие оптоволокна

Световые сигналы, как метод обмена информацией, используются со времен появления огня. Идея информирования светом в новом времени впервые была апробирована Р.Гуком, который создал оптический телеграф, способный передавать информацию с помощью интервальной трансляции световых видимых сигналов, которые можно было увидеть на разных расстояниях невооруженным глазом или в подзорную трубу.

Далее появился другой сигнальный аппарат, который разработал Клоп Шапп. Здесь была трансформирована не только идея использования световых импульсов, но и введена систематизация подаваемых аппаратом сигналов. Теперь наборы знаков были унифицированы, а для их расшифровки был составлен словарь. Телеграфы нового типа быстро распространились не только на родине создателя во Франции, но и по всему континенту.

После этого был еще ряд доработок световых телеграфов, пока в 1960 году не появился лазер. Открытие принадлежит советским ученым, которые не только открыли новую форму светового луча, но и заложили базу для дальнейшего развития методик передачи данных светом.

Современные оптико-волоконные линии связи отличаются большей долговечностью, качеством, стойкостью к внешним воздействиям и разы превосходят медные кабельные сети передачи данных. Несмотря на более высокую стоимость, оптоволокно быстро и уже почти полностью заменило магистральные телекоммуникационные сети, обеспечив высокую скорость, чистоту и защиту сигнала от помех.

Материалы для оптоволокна

Как мы говорили выше, оптоволоконный кабель в сердечнике имеет кварцевый или полимерный стержень. Натуральный кварц обуславливает следующие характеристики кабельной продукции:

    Высокую оптическую проницаемость, что позволяет транслировать волны разных диапазонов.

    Малое затухание (потери сигнала), что является определяющим преимуществом для использования оптоволокна при построении магистралей большой протяженности.

    Температурную стойкость – оптико-волоконные кабели могут эксплуатироваться при экстремально высоких температурах.

    Большую гибкость – световоды на основе кварцевого оптоволокна могут иметь до 1000 микрометров в диаметре.

К минусам стоит отнести снижение пропускной способности в зонах с инфракрасным излучением: здесь сигнал затухает и использование дорогостоящих кабелей нецелесообразно.

Структура оптического кабеля

Вне зависимости от того, используется кварцевый или полимерный материал, структура кабеля одинакова. Ее образуют:

    Сердечник. Отвечает за распространение светового луча вдоль длины кабеля. Диаметр напрямую влияет на доступную площадь «попадания» светового луча, а значит – возможность подачи излучения для качественной доставки сигнала. Коэффициент преломления в сердечнике равен 1,48.

    Внутренняя оболочка . Отвечает за отражение светового луча и «корректировку» его траектории. Иными словами, не дает лучу покинуть пределы сердечника. Чем выше отражающая мощность оболочки, чем быстрее распространяется луч, передается сигнал и меньше его потери.

    Внешняя обшивка. Это буфер от внешних воздействий.Защищает внутренние компоненты кабеля от факторов среды, включая химические и механические воздействия. Предельно допустимая толщина обшивки не превышает 250 микрон.

Виды кабельной продукции на основе волоконной оптики

Сегодня существует два вида оптоволокна – одномодовое и многомодовое . Они различаются характеристиками и диаметром сердечника.

Диаметр сердечника одномодового волокна не превышает 8 микрон. Именно этот тип используется для трансляций на дальние расстояния, так как межмодовая дисперсия здесь практически равна нулю. Дело в том, что в столь малом диаметре можете перемещаться только один луч, поэтому возможность возникновения помех отсутствует.

Многомодовое волокно в диаметре может составлять 62,5 микрона. Здесь большая площадь приема, что позволяет двигаться нескольким лучам одновременно. При этом ввод лучей, как правило, происходит под разными углами, что повышает рассеивание из-за отражения этих лучей от поверхности оболочки. Соответственно, скорость и качество сигнала снижаются, поэтому подобные линии используются для локальных сетей и передачи сигнала между близлежащими строениями.

Многомодовое волокно бывает:

    Градиентным. Его особенность – разная плотность сердечника на разных его участках. Это позволяет управлять потоком, «разгоняя» луч на участках смены плотности, что увеличивает общую скорость передачи данных.

    Ступенчатым . Волокно с одинаковой плотностью сердечника на всем протяжении кабеля. Вероятность межмодовой дисперсии здесь выше, а скорость передачи – ниже.

Область применения

Оптическое волокно применяется в любых сферах, где требуется построение телекоммуникационных сетей и проведение технических изысканий с использованием оптических датчиков. Медицина, наука, добывающая промышленность, ЖКХ, ваш компьютер – все в той или иной мере использует технологии волоконной оптики.

Волоконно-оптические линии связи (ВОЛС) давно занимают одну из лидирующих позиций на рынке телекоммуникаций. Имея ряд преимуществ перед другими способами передачи информации (витая пара, коаксиальный кабель, беспроводная связь…), ВОЛС широко используются в телекоммуникационных сетях разных уровней, а также в промышленности, энергетике, медицине, системах безопасности, высокопроизводительных вычислительных системах и во многих других областях.

Передача информации в ВОЛС осуществляется по оптическому волокну (optical fiber). Для того чтобы грамотно подойти к вопросу использования ВОЛС, важно хорошо понимать, что из себя представляет оптическое волокно как среда передачи данных, каковы его основные свойства и характеристики, какие бывают разновидности оптических волокон. Именно этим базовым вопросам теории волоконно-оптической связи и посвящена данная статья.

Структура оптического волокна

Оптическое волокно (оптоволокно) - это волновод с круглым поперечным сечением очень малого диаметра (сравним с толщиной человеческого волоса), по которому передается электромагнитное излучение оптического диапазона. Длины волн оптического излучения занимают область электромагнитного спектра от 100 нм до 1 мм, однако в ВОЛС обычно используется ближний инфракрасный (ИК) диапазон (760-1600 нм) и реже - видимый (380-760 нм). Оптическое волокно состоит из сердцевины (ядра) и оптической оболочки, изготовленных из материалов, прозрачных для оптического излучения (рис. 1).

Рис. 1. Конструкция оптического волокна

Свет распространяется по оптоволокну благодаря явлению полного внутреннего отражения. Показатель преломления сердцевины, обычно имеющий величину от 1,4 до 1,5, всегда немного больше, чем показатель преломления оптической оболочки (разница порядка 1%). Поэтому световые волны, распространяющиеся в сердцевине под углом, не превышающим некоторое критическое значение, претерпевают полное внутреннее отражение от оптической оболочки (рис. 2). Это следует из закона преломления Снеллиуса. Путем многократных переотражений от оболочки эти волны распространяются по оптическому волокну.

Рис. 2. Полное внутреннее отражение в оптическом волокне

На первых метрах оптической линии связи часть световых волн гасят друг друга вследствие явления интерференции. Световые волны, которые продолжают распространяться в оптоволокне на значительные расстояния, называются пространственными модами оптического излучения. Понятие моды описывается математически при помощи уравнений Максвелла для электромагнитных волн, однако в случае оптического излучения под модами удобно понимать траектории распространения разрешенных световых волн (обозначены черными линиями на рис. 2). Понятие моды является одним из основных в теории волоконно-оптической связи.

Основные характеристики оптического волокна

Способность оптического волокна передавать информационный сигнал описывается при помощи ряда геометрических и оптических параметров и характеристик, из которых наиболее важными являются затухание и дисперсия .

1. Геометрические параметры.

Помимо соотношения диаметров сердцевины и оболочки, большое значение для процесса передачи сигнала имеют и другие геометрические параметры оптоволокна, например:

  • некруглость (эллиптичность) сердцевины и оболочки, определяемая как разность максимального и минимального диаметров сердцевины (оболочки), деленная на номинальный радиус, выражается в процентах;
  • неконцентричность сердцевины и оболочки - расстояние между центрами сердцевины и оболочки (рис. 3).

Рис 3. Некруглость и неконцентричность сердцевины и оболочки

Геометрические параметры стандартизированы для разных типов оптического волокна. Благодаря совершенствованию технологии производства значения некруглости и неконцентричности удается свести к минимуму, так что влияние неточности геометрии оптоволокна на его оптические свойства оказывается несущественным.

(NA) - это синус максимального угла падения луча света на торец волокна, при котором выполняется условие полного внутреннего отражения (рис. 4). Этот параметр определяет количество мод, распространяющихся в оптическом волокне. Также величина числовой апертуры влияет на точность, с которой должна производиться стыковка оптических волокон друг с другом и с другими компонентами линии.

Рис 4. Числовая апертура

3. Профиль показателя преломления.

Профиль показателя преломления - это зависимость показателя преломления сердцевины от ее поперечного радиуса. Если показатель преломления остается одинаковым во всех точках поперечного сечения сердцевины, такой профиль называется ступенчатым . Среди других профилей наибольшее распространение получил градиентный профиль, при котором показатель преломления плавно увеличивается от оболочки к оси (рис. 5). Помимо этих двух основных, встречаются и более сложные профили.

Рис. 5. Профили показателя преломления

4. Затухание (потери).

Затухание - это уменьшение мощности оптического излучения по мере распространения по оптическому волокну (измеряется в дБ/км). Затухание возникает вследствие различных физических процессов, происходящих в материале, из которого изготавливается оптоволокно. Основными механизмами возникновения потерь в оптическом волокне являются поглощение и рассеяние.

а) Поглощение . В результате взаимодействия оптического излучения с частицами (атомами, ионами…) материала сердцевины часть оптической мощности выделяется в виде тепла. Различают собственное поглощение , связанное со свойствами самого материала, и примесное поглощение , возникающее из-за взаимодействия световой волны с различными включениями, содержащимися в материале сердцевины (гидроксильные группы OH - , ионы металлов…).

б) Рассеяние света, то есть отклонение от исходной траектории распространения, происходит на различных неоднородностях показателя преломления, геометрические размеры которых меньше или сравнимы с длиной волны излучения. Такие неоднородности являются следствием как наличия дефектов структуры волокна (рассеяние Ми ), так и свойствами аморфного (некристаллического) вещества, из которого изготавливается волокно (рэлеевское рассеяние ). Рэлеевское рассеяние является фундаментальным свойством материала и определяет нижний предел затухания оптического волокна. Существуют и другие виды рассеяния (Бриллюэна-Мандельштама, Рамана) , которые проявляются при уровнях мощности излучения, превышающих те, которые обычно используются в телекоммуникациях.

Величина коэффициента затухания имеют сложную зависимость от длины волны излучения. Пример такой спектральной зависимости приведен на рис. 6. Область длин волн с низким затуханием называется окном прозрачности оптического волокна. Таких окон может быть несколько, и именно на этих длинах волн обычно осуществляется передача информационного сигнала.

Рис. 6. Спектральная зависимость коэффициента затухания

Потери мощности в волокне обуславливаются также различными внешними факторами. Так, механические воздействия (изгибы, растяжения, поперечные нагрузки) могут приводить к нарушению условия полного внутреннего отражения на границе сердцевины и оболочки и выходу части излучения из сердцевины. Определенное влияние на величину затухания оказывают условия окружающей среды (температура, влажность, радиационный фон…).

Поскольку приемник оптического излучения имеет некоторый порог чувствительности (минимальную мощность, которую должен иметь сигнал для корректного приема данных), затухание служит ограничивающим фактором для дальности передачи информации по оптическому волокну.

5.Дисперсионные свойства.

Помимо расстояния, на которое передается излучение по оптическому волокну, важным параметром является скорость передачи информации. Распространяясь по волокну, оптические импульсы уширяются во времени. При высокой частоте следования импульсов на определенном расстоянии от источника излучения может возникнуть ситуация, когда импульсы начнут перекрываться во времени (то есть следующий импульс придет на выход оптического волокна раньше, чем закончится предыдущий). Это явление носит название межсимвольной интерференции (англ. ISI - InterSymbol Interference, см. рис. 7). Приемник обработает полученный сигнал с ошибками.

Рис. 7. Перекрывание импульсов, вызывающее межсимвольную интерференцию: а) входной сигнал; б) сигнал, прошедший некоторое расстояние L1 по оптическому волокну; в) сигнал, прошедший расстояние L2> L1.

Уширение импульса, или дисперсия , обуславливается зависимостью фазовой скорости распространения света от длины волны излучения, а также другими механизмами (табл. 1).

Таблица 1. Виды дисперсии в оптическом волокне.

Название Краткое описание Параметр
1. Хроматическая дисперсия Любой источник излучает не одну длину волны, а спектр незначительно отличающихся длин волн, которые распространяются с разной скоростью.

Коэффициент хроматической дисперсии, пс/(нм*км).

Может быть положительным (спектральные составляющие с большей длиной волны двигаются быстрее) и отрицательным (наоборот). Существует длина волны с нулевой дисперсией.

а) Материальная хроматическая дисперсия Связана со свойствами материала (зависимость показателя преломления от длины волны излучения)
б) Волноводная хроматическая дисперсия Связана с наличием волноводной структуры (профиль показателя преломления)
2. Межмодовая дисперсия Моды распространяются по разным траекториям, поэтому возникает задержка во времени их распространения.

Ширина полосы пропускания ( bandwidth), МГц*км .

Эта величина определяет максимальную частоту следования импульсов, при которой не происходит межсимвольной интерференции (сигнал передается без существенных искажений). Пропускная способность канала (Мбит/с) может численно отличаться от ширины полосы пропускания (МГц*км) в зависимости от способа кодирования информации.

3. Поляризационная модовая дисперсия, PMD Мода имеет две взаимно перпендикулярные составляющие (поляризационные моды), которые могут распространяться с различными скоростями.

Коэффициент PMD, пс/√км .

Временная задержка из-за PMD, нормируемая на 1 км.

Таким образом, дисперсия в оптическом волокне отрицательно сказывается как на дальности, так и на скорости передачи информации.

Разновидности и классификация оптических волокон

Рассмотренные свойства являются общими для всех оптических волокон. Однако описанные параметры и характеристики могут существенно отличаться и оказывать различное влияние на процесс передачи информации в зависимости от особенностей производства оптоволокна.

Фундаментальным является деление оптическим волокон по следующим критериям.

  1. Материал . Основным материалом для изготовления сердцевины и оболочки оптического волокна является кварцевое стекло различного состава. Однако используется большое количество других прозрачных материалов, в частности, полимерные соединения.
  2. Количество распространяющихся мод . В зависимости от геометрических размеров сердцевины и оболочки и величины показателя преломления в оптическом волокне может распространяться только одна (основная) или же большое количество пространственных мод. Поэтому все оптические волокна делят на два больших класса: одномодовые и многомодовые (рис. 8).

Рис. 8. Многомодовое и одномодовое волокно

На основании этих факторов можно выделить четыре основных класса оптических волокон, получивших распространение в телекоммуникациях:

  1. (POF).
  2. (HCS).

Каждому из этих классов посвящена отдельная статья на нашем сайте. Внутри каждого из этих классов также существует своя классификация.

Производство оптических волокон

Процесс изготовления оптического волокна крайне сложен и требует большой точности. Технологический процесс проходит в два этапа: 1) создание заготовки, представляющей собой стержень из выбранного материала со сформированным профилем показателя преломления, и 2) вытягивание волокна в вытяжной башне, сопровождающееся покрытием защитной оболочкой. Существует большое количество различных технологий создания заготовки оптического волокна, разработка и совершенствование которых происходит постоянно.

Практическое использование оптического волокна в качестве среды передачи информации невозможно без дополнительного упрочнения и защиты. Волоконно-оптическим кабелем называется конструкция, включающая в себя одно или множество оптических волокон, а также различные защитные покрытия, несущие и упрочняющие элементы, влагозащитные материалы. По причине большого разнообразия областей применения оптоволокна производители выпускают огромное количество самых разных волоконно-оптических кабелей, отличающихся конструкцией, размерами, используемыми материалами и стоимостью (рис. 9).

Рис.9. Волоконно-оптические кабели

На сегодняшний день оптический аудио-кабель - один из самых современных, а также надежных способов для По оптоволокну передача данных производится с использованием света. Как всем известно, свет - одно из самых быстрых в мире явлений, поэтому стоит понять, что же представляет собой такой кабель, как он работает и для чего нужен.

Свет является электромагнитной волной высокой частоты. Если он проходит через оптическое волокно, то одновременно может нести очень большое При этом такой способ передачи стабилен и имеет высокую помехоустойчивость к электромагнитному излучению. При прохождении через световод световая волна затухает - это зависит от прозрачности, а также других свойств, которыми обладает оптоволокно, в частности оптический аудио-кабель.

Давайте посмотрим подробнее на примере оптического кабеля DAXX R07. Создан он из стеклянных волокон, у которых высокий уровень прозрачности. Также он обладает низким коэффициентом дисперсии, что обеспечивает стабильный поток данных и высокую скорость распространения света. Благодаря этим свойствам, оптический аудио-кабель R07 в семействе межблочников считается одним из лучших, поэтому отлично подходит для домашних кинотеатров high-end класса.

Стеклянную фибру этого кабеля составляют 280 тонких волокон. Толщина одного волокна 53 микрон. Каждое волокно лакировано специальным отражающим слоем, у которого высокий индекс рефракции - это способствует формированию плавного потока света с минимально возможным затуханием. Такая конструкция обеспечивает высокую стабильность при передаче большого объема данных, именно поэтому для сигналов аудио, оптический кабель R07 является одним из самых лучших.

Для защиты от механических повреждений многожильное волокно заливается специальным буфером, а для максимальной гибкости всей конструкции используется двойной слой поливинилхлорида. От чрезмерных изгибов кабель предохраняет наружный нейлоновый экран. Металлические коннекторы обеспечивают долговечность применения.

Перед электрическим коаксиальным кабелем оптический аудио-кабель имеет ряд преимуществ:

Оптика обладает способностью передавать большие объемы цифровой информации;

С помощью оптоволокна можно сделать между двумя компонентами развязку по «земле». В особенности это актуально, когда системный блок компьютера подключается к ресиверу.

Качественный оптоволоконный кабель стоит недешево. Также дорого обойдется его реализация (до $40-50). При бюджетном оборудовании трудно пользоваться преимуществами «оптики», поэтому очень часто вместо оптического кабеля пользователи выбирают более дешевый коаксиальный цифровой кабель.

Нередко у специалистов спрашивают, нужно ли покупать дорогостоящий кабель, ведь большая часть оснащается только оптическим цифровым выходом? Так вот, дорогой кабель не особо нужен. В спутниковом телевидении качество звука не самое высокое (цифровой поток аудиоданных имеет невысокий битрейт), поэтому для этих целей оптический аудио-кабель купить можно самый простой, который стоит примерно 10-12 долларов.

Век информационных технологий оперирует громадными массивами данных из самых разнообразных сфер нашей жизни. Мы обмениваемся в сети большими медиафайлами, госучреждения, банки, аэропорты, институты, компании, тысячи и сотни тысяч других субъектов каждую секунду передают и получают терабиты разнообразнейшей информации. И сегодня от каналов связи, кроме физической способности пропускать через себя такие колоссальные объемы, требуется еще и предельно высокая скорость обмена, которая иногда имеет критически важное значение.

Когда был придуман и успешно запущен в «массы» оптический кабель , интернет получил новый фундаментальный фактор, позволивший мировой сети развиваться еще более быстрыми темпами. Созданный на основе принципа передачи информации через оптические сигналы данный тип кабеля связи обеспечил практически мгновенную передачу дата-массивов любого объема на громадные дистанции. Фотоны движутся на скоростях близких к световым, почти не затухают, не чувствительны к электрошумам, их сложно перехватить. Волоконная оптика работает на высоких частотах, относительно компактна, довольно проста для масштабирования и монтажа.

Данный материал посвящен вопросу классификации оптических кабельных изделий связи, мы выделим их основные разновидности и расскажем об особенностях каждой их них.

Описание и конструкция

Как и силовые, оптоволоконные провода чрезвычайно разнообразны по конструкции, типам исполнения, сфере использования и прочим критериям. Оптический кабель , обеспечивающий интернет широкополосным каналом для транспортировки информации, обязательно имеет в своей конструкции такие элементы:

· оптоволокна или стекловолоконные нити из высококачественного кварцевого стекла, которые скручены по продуманной схеме и представляют собой заключенную в оболочку сердцевину. По ней за счет последовательных и полных отражений распространяется свет. При этом сердцевина имеет высочайший уровень преломления, а оболочка - низкий,

· оптический модуль - это центральная полимерная или металлическая трубка, в которой заключены хрупкие оптические волокна,

· центральный силовой элемент из стеклопластика, стального каната, проволоки или стренги присутствует в многомодульных магистральных марках кабеля,

· наружная защитная оболочка.

Классификация оптических кабелей и сфера их применения

В этом разделе мы выделим основные критерии, по которым различают оптические кабеля для интернета , и разберемся, что в них особенного.

· (самонесущие: , а также оптический кабель с тросом из стеклопластика или металла, который покрыт ПЭТ-оболочкой: , ). Подвесная оптика может размещаться на грозотросах, фазовых проводах ВЛ, контактной сети электротранспорта.

По сфере применения и дальности передачи информации оптический интернет-кабель бывает следующих типов:

· городской оптический интернет-кабель ( , , ), как правило, прокладывается в трубах и коллекторах. Он предназначен для создания сравнительно коротких магистралей (до 10 км), но также должен обладать отличной дата-пропускной способностью, т.е. быть поликанальным. По техпараметрам класс городских кабелей близок к зоновым,

· полевые марки (ОК-ПН) предназначены для строительства линий в полевых условиях, в т.ч. подземным, подводным и подвесным способом, поэтому рассчитаны на многократные прокладки и снятия, не распространяют горение, стойки к воздействию растягивающих усилий, влаги, бензина и дизтоплива, грызунам. Полевой кабель обычно содержит 1-12 оптоволокон,

· подводный оптический кабель ( , ) может быть грузонесущим, отличается высокой разрывной и растягивающей устойчивостью, не пропускает влагу, в т.ч. молекулярную, имеет низкий уровень дисперсионности и значительные длины регенерационных участков.,

· объектовая (стационарная) оптика служит для пропускания внутренних информационных потоков, к примеру, в бортовых системах кораблей и самолетов, видеотелефонии в учреждениях, кабельном ТВ непосредственно в здании. В конструкции объектовых кабелей не предусмотрены гидрофобные заполнители, что упрощает их монтаж и повышает степень пожарной безопасности. Примеры марок: , , ,

· монтажный оптический кабель (ОК-МС с разным номером разработки) имеет форму плоских лент или жгутов. Он применяется для создания внутри- и межблоковых соединений в аппаратуре локальных инфо-систем. Монтажные кабельные изделия сконструированы на основе мультимодовых градиентных оптоволокон.

Одна из разновидностей классификации оптических кабелей связи по назначению с указанием вариантов применения и монтажа представлена на рисунке.


Оптоволоконные кабеля могут также различаться по вариантам конструктивного исполнения сердечника:

· с повивной концентрической скруткой. Оптические модули с числом волокон 1-24 в этом виде проводных изделий скручены вокруг центрального силового элемента. При этом каждый следующий повив содержит на 6 волокон больше. Одноповивная скрутка насчитывает 4-12 модулей (до 288 оптоволокон), мультиповивная - до 48 (576 ОВ),

· с центральным оптическим модулем, который выполнен в виде сердечника с количеством оптических волокон до 48,

· с фигурным сердечником. В полимерной оболочке этого типа кабельных изделий выполнены профилированные пазы, в которые укладываются оптические модули или плоские ленты с общим числом оптоволокон до 576. Преимуществом такого расположения является минимизация продольного разрывного усилия. Этот тип встречается редко из-за высокой стоимости и сложности монтажной разделки,

· плоские оптические ленты уложены в центральный оптомодуль, количество оптических волокон может достигать 288.

Первые две группы оптических кабелей чрезвычайно широко распространены в странах СНГ и РФ.

Еще одна классификация подразделяет оптические кабеля для интернета по материалу, из которого изготовлены оптоволокна:

· GOF - стекловолокно, glass optic fiber,

· POF - полимерное волокно, plastic optic fiber,

· PCF - стеклянно-кристаллическое волокно с защитным покрытием из полимера, plastic crystal fiber.

В конструкции оптического кабеля для интернета могут присутствовать металлические элементы, к примеру, свинцовые или алюминиевые оболочки, бронированные покровы, медные проводники. Существуют и полностью диэлектрические марки, которые менее прочны и влагостойки, но обладают отличной помехоустойчивостью, имеют более скромные габариты и вес, поэтому удобны в транспортировке и монтаже.