Людвиг Больцман: Именные достижения. Универсальная газовая постоянная — универсальная, фундаментальная физическая константа R, равная произведению постоянной Больцмана k на постоянную Авогадро

Для постоянной, связанной с энергией излучения чёрного тела, смотри Постоянная Стефана-Больцмана

Значение постоянной k

Размерность

1,380 6504(24) 10 −23

8,617 343(15) 10 −5

1,3807 10 −16

Смотри также Значения в различных единицах ниже.

Постоянная Больцмана (k или k B ) - физическая постоянная, определяющая связь между температурой вещества и энергией теплового движения частиц этого вещества. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе СИ равно

В таблице последние цифры в круглых скобках указывают стандартную погрешность значения постоянной. В принципе, постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако точное вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний.

Экспериментально постоянную Больцмана можно определить с помощью закона теплового излучения Планка, описывающего распределение энергии в спектре равновесного излучения при определённой температуре излучающего тела, а также другими методами.

Существует связь между универсальной газовой постоянной и числом Авогадро , из которой следует значение постоянной Больцмана:

Размерность постоянной Больцмана такая же, как и у энтропии.

  • 1 История
  • 2 Уравнение состояния идеального газа
  • 3 Связь между температурой и энергией
    • 3.1 Соотношения газовой термодинамики
  • 4 Множитель Больцмана
  • 5 Роль в статистическом определении энтропии
  • 6 Роль в физике полупроводников: тепловое напряжение
  • 7 Применения в других областях
  • 8 Постоянная Больцмана в планковских единицах
  • 9 Постоянная Больцмана в теории бесконечной вложенности материи
  • 10 Значения в различных единицах
  • 11 Ссылки
  • 12 См. также

История

В 1877 г. Больцман впервые связал между собой энтропию и вероятность, однако достаточно точное значение постоянной k как коэффициента связи в формуле для энтропии появилось лишь в трудах М. Планка. При выводе закона излучения чёрного тела Планк в 1900–1901 гг. для постоянной Больцмана нашёл значение 1,346 10 −23 Дж/K, почти на 2,5% меньше принятого в настоящее время.

До 1900 г. соотношения, которые сейчас записываются с постоянной Больцмана, писались с помощью газовой постоянной R , а вместо средней энергии на одну молекулу использовалась общая энергия вещества. Лаконичная формула вида S = k log W на бюсте Больцмана стала таковой благодаря Планку. В своей нобелевской лекции в 1920 г. Планк писал:

Эта константа часто называется постоянной Больцмана, хотя, насколько я знаю, сам Больцман никогда не вводил её - странное состояние дел, при том, что в высказываниях Больцмана не было речи о точном измерении этой константы.

Такая ситуация может быть объяснена проведением в то время научных дебатов по выяснению сущности атомного строения вещества. Во второй половине 19 века существовали значительные разногласия в отношении того, являются ли атомы и молекулы реальными, либо они лишь удобный способ описания явлений. Не было единства и в том, являются ли "химические молекулы", различаемые по их атомной массе, теми же самыми молекулами, что и в кинетической теории. Далее в нобелевской лекции Планка можно найти следующее:

«Ничто не может лучше продемонстрировать положительную и ускоряющуюся скорость прогресса, чем искусство эксперимента за последние двадцать лет, когда было открыто сразу множество методов измерения массы молекул практически с той же точностью, что и измерение массы какой-нибудь планеты».

Уравнение состояния идеального газа

Для идеального газа справедлив объединённый газовый закон, связывающий давление P , объём V , количество вещества n в молях, газовую постоянную R и абсолютную температуру T :

В данном равенстве можно сделать замену . Тогда газовый закон будет выражаться через постоянную Больцмана и количество молекул N в объёме газа V :

Связь между температурой и энергией

В однородном идеальном газе, находящемся при абсолютной температуре T , энергия, приходящаяся на каждую поступательную степень свободы, равна, как следует из распределения Максвелла, kT / 2 . При комнатной температуре (≈ 300 K) эта энергия составляет Дж, или 0,013 эВ.

Соотношения газовой термодинамики

В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия 3kT / 2 . Это хорошо согласуется с экспериментальными данными. Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню из атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона.

Кинетическая теория даёт формулу для среднего давления P идеального газа:

Учитывая, что средняя кинетическая энергия прямолинейного движения равна:

находим уравнение состояния идеального газа:

Это соотношение неплохо выполняется и для молекулярных газов; однако зависимость теплоёмкости изменяется, так как молекулы могут иметь дополнительные внутренние степени свободы по отношению к тем степеням свободы, которые связаны с движением молекул в пространстве. Например, двухатомный газ имеет уже приблизительно пять степеней свободы.

Множитель Больцмана

В общем случае система в равновесии с тепловым резервуаром при температуре T имеет вероятность p занять состояние с энергией E , что может быть записано с помощью соответствующего экспоненциального множителя Больцмана:

В данном выражении фигурирует величина kT с размерностью энергии.

Вычисление вероятности используется не только для расчётов в кинетической теории идеальных газов, но и в других областях, например в химической кинетике в уравнении Аррениуса.

Роль в статистическом определении энтропии

Основная статья : Термодинамическая энтропия

Энтропия S изолированной термодинамической системы в термодинамическом равновесии определяется через натуральный логарифм от числа различных микросостояний W , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией E ):

Коэффициент пропорциональности k является постоянной Больцмана. Это выражение, определяющее связь между микроскопическими и макроскопическими состояниями (через W и энтропию S соответственно), выражает центральную идею статистической механики и является главным открытием Больцмана.

В классической термодинамике используется выражение Клаузиуса для энтропии:

Таким образом, появление постоянной Больцманаk можно рассматривать как следствие связи между термодинамическим и статистическим определениями энтропии.

Энтропию можно выразить в единицах k , что даёт следующее:

В таких единицах энтропия точно соответствует информационной энтропии.

Характерная энергия kT равна количеству теплоты, необходимому для увеличения энтропии S " на один нат.

Роль в физике полупроводников: тепловое напряжение

В отличие от других веществ, в полупроводниках существует сильная зависимость электропроводности от температуры:

где множитель σ 0 достаточно слабо зависит от температуры по сравнению с экспонентой, E A – энергия активации проводимости. Плотность электронов проводимости также экспоненциально зависит от температуры. Для тока через полупроводниковый p-n-переход вместо энергии активации рассматривают характерную энергию данного p-n перехода при температуре T как характерную энергию электрона в электрическом поле:

где q – , а V T есть тепловое напряжение, зависящее от температуры.

Данное соотношение является основой для выражения постоянной Больцмана в единицах эВ∙К −1 . При комнатной температуре (≈ 300 K) значение теплового напряжения порядка 25,85 милливольт ≈ 26 мВ.

В классической теории часто используют формулу, согласно которой эффективная скорость носителей заряда в веществе равна произведению подвижности носителей μ на напряженность электрического поля. В другой формуле плотность потока носителей связывается с коэффициентом диффузии D и с градиентом концентрации носителей n :

Согласно соотношению Эйнштейна-Смолуховского, коэффициент диффузии связан с подвижностью:

Постоянная Больцмана k входит также в закон Видемана-Франца, по которому отношение коэффициента теплопроводности к коэффициенту электропроводности в металлах пропорционально температуре и квадрату отношения постоянной Больцмана к электрическому заряду.

Применения в других областях

Для разграничения температурных областей, в которых поведение вещества описывается квантовыми или классическими методами, служит температура Дебая:

Согласно закону Стефана – Больцмана плотность интегрального полусферического излучения E 0 зависит только от температуры и изменяется пропорционально четвертой степени абсолютной температуры T :

Стефана – Больцмана постоянная σ 0 – физическая постоянная, входящая в закон, определяющий объемную плотность равновесного теплового излучения абсолютно черного тела:

Исторически закон Стефана-Больцмана был сформулирован раньше закона излучения Планка, из которого он вытекает как следствие. Закон Планка устанавливает зависимость спектральной плотности потока излучения E 0 от длины волны λ и температуры T :

где λ – длина волны, м; с =2,998 10 8 м/с – скорость света в вакууме; Т – температура тела, К;
h = 6,625 ×10 -34 Дж×с– постоянная Планка.

Физическая постоянная k , равная отношению универсальной газовой постоянной R =8314Дж/(кг× K) к числу Авогадро NA =6,022× 10 26 1/(кг× моль):

Число различных конфигураций системы из N частиц для данного набора чисел n i (число частиц, находящихся в i -том состоянии, которому соответствует энергия e i ) пропорционально величине:

Величина W есть число способов распределения N частиц по энергетическим уровням. Если справедливо соотношение (6) то считается, что исходная система подчиняется статистике Больцмана. Набор чисел n i , при котором число W максимально, встречается наиболее часто и соответствует наиболее вероятному распределению.

Физическая кинетика – микроскопическая теория процессов в статистически неравновесных системах.

Описание большого числа частиц может успешно осуществляться вероятностными методами. Для одноатомного газа состояние совокупности молекул определяется их координатами и значениями проекций скоростей на соответствующие координатные оси. Математически это описывается функцией распределения, характеризующей вероятность пребывания частицы в данном состоянии:

есть ожидаемое число молекул в объеме d d , координаты которых находятся в интервале от до +d , а скорости в интервале от до +d.

Если осредненной по времени потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией, то газ называется идеальным. Идеальный газ называется газом Больцмана, если отношение длины пробега молекул в этом газе к характерному размеру течения L конечно, т.е.

т.к. длина пробега обратно пропорциональна nd 2 (n – числовая плотность 1/м 3 , d – диаметр молекулы, м).

Величину

называют H -функцией Больцмана для единицы объема, которая связана с вероятностью обнаружения системы из молекул газа в данном состоянии. Каждому состоянию соответствуют определенные числа заполнения шестимерных пространственно-скоростных ячеек, на которые может быть разбито фазовое пространство рассматриваемых молекул. Обозначим W вероятность того, что в первой ячейке рассматриваемого пространства окажется N 1 молекул, во второй N 2 и т.д.

С точностью до постоянной, определяющей начало отсчета вероятности, правомерно соотношение:

где – H-функция области пространства А , занятой газом. Из (9) видно, что W и H взаимосвязаны, т.е. изменение вероятности состояния приводит к соответствующей эволюции H функции.

Больцмана принцип устанавливает связь между энтропией S физической системы и термодинамической вероятностью W её состояния:

(печатается по изданию: Коган М.Н. Динамика разреженного газа. – М.: Наука, 1967.)

Общий вид КУБ:

где – массовая сила, обусловленная наличием различных полей (гравитационного, электрического, магнитного), действующая на молекулу; J – интеграл столкновений. Именно этот член уравнения Больцмана учитывает столкновения молекул друг с другом и соответствующие изменения скоростей взаимодействующих частиц. Интеграл столкновений представляет собой пятимерный интеграл и имеет следующую структуру:

Уравнение (12) с интегралом (13) получено для столкновения молекул, при которых не возникает тангенциальных сил, т.е. сталкивающиеся частицы считаются идеально гладкими.

В процессе взаимодействия внутренняя энергия молекул не меняется, т.е. предполагается, что эти молекулы являются идеально упругими. Рассматриваются две группы молекул, имеющих до соударения друг с другом (столкновения) скорости и (рис. 1), а после столкновения соответственно скорости и . Разность скоростей и называется относительной скоростью, т.е. . Ясно, что для гладкого упругого столкновения . Функции распределения f 1 ", f", f 1 ,f описывают молекулы соответствующих групп после и до столкновений, т.е. ; ; ; .

Рис. 1. Столкновение двух молекул.

В (13) входят два параметра, характеризующие расположение сталкивающихся молекул друг относительно друга: b и ε; b – прицельное расстояние, т.е. наименьшее расстояние, на которое сблизились бы молекулы при отсутствии взаимодействия (рис. 2); ε называют угловым параметром столкновений (рис. 3). Интегрирование по b от 0 до ¥ и по от 0 до 2p (два внешних интеграла в (12)) охватывает всю плоскость силового взаимодействия перпендикулярно вектору

Рис. 2. Траектория движения молекул.

Рис. 3. Рассмотрение взаимодействия молекул в цилиндрической системе координат: z , b , ε

Кинетическое уравнение Больцмана выведено при следующих допущениях и предположениях.

1. Считается, что происходит в основном столкновения двух молекул, т.е. роль столкновений одновременно трех и большего числа молекул незначительна. Это допущение позволяет использовать для анализа одночастичную функцию распределения, которая выше названа просто функцией распределения. Учет столкновения трех молекул приводит к необходимости использования в исследовании двухчастичной функции распределения. Соответственно анализ существенно усложняется.

2. Предположение о молекулярном хаосе. Оно выражается в том, что вероятности обнаружения частицы 1 в фазовой точке и частицы 2 в фазовой точке независимы друг от друга.

3. Равновероятны столкновения молекул с любым прицельным расстоянием, т.е. функция распределения не меняется на диаметре взаимодействия. Необходимо отметить, что анализируемый элемент должен быть малым, чтобы f в пределах этого элемента не менялась, но в то же время чтобы не была велика относительная флуктуация ~ . Потенциалы взаимодействия, используемые при вычислении интеграла столкновений, являются сферически симметричными, т.е. .

Распределение Максвелла-Больцмана

Равновесное состояние газа описывается абсолютным Максвелловским распределением, которое является точным решением кинетического уравнения Больцмана:

где m – масса молекулы, кг.

Общее локально-максвелловское распределение иначе называемое распределение Максвелла-Больцмана:

в том случае, когда газ движется как целое со скоростью и переменные n , T зависят от координаты
и времени t .

В поле тяготения Земли точное решение уравнения Больцмана показывает:

где n 0 = плотность у поверхности Земли, 1/м 3 ; g – ускорение силы тяжести, м/с 2 ; h – высота, м. Формула (16) является точным решением кинетического уравнения Больцман либо в безграничном пространстве, либо при наличии границ, не нарушающих этого распределения, при этом температура также должна оставаться постоянной.

Эта страница оформлена Пузиной Ю.Ю. при поддержке Российского Фонда Фундаментальных Исследований – проект №08-08-00638.

Постоянная Больцмана (k или k b ) - физическая постоянная, определяющая связь между и . Названа в честь австрийского физика , сделавшего большой вклад в , в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе равно

k = 1,380\;6505(24) \times 10^{-23} / .

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. В принципе, постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако, вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний. В естественной системе единиц Планка естественная единица температуры задается так, что постоянная Больцмана равна единице.

Связь между температурой и энергией.

Определение энтропии.

Термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z, соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

S = k \, \ln Z

Коэффициент пропорциональности k и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими (Z) и макроскопическими состояниями (S), выражает центральную идею статистической механики.

Больцман Людвиг (1844-1906) - великий австрийский физик, один из основоположников молекулярно-кинетической теории. В трудах Больцмана молекулярно-кинетическая теория впервые предстала как логически стройная, последовательная физическая теория. Больцман дал статистическое истолкование второго закона термодинамики. Им много сделано для развития и популяризации теории электромагнитного поля Максвелла. Борец по натуре, Больцман страстно отстаивал необходимость молекулярного истолкования тепловых явлений и принял на себя основную тяжесть борьбы с учеными, отрицавшими существование молекул.

В уравнение (4.5.3) входит отношение универсальной газовой постоянной R к постоянной Авогадро N A . Это отношение одинаково для всех веществ. Оно называется постоянной Больцмана, в честь Л. Больцмана, одного из основателей молекулярно-кинетической теории.

Постоянная Больцмана равна:

Уравнение (4.5.3) с учетом постоянной Больцмана записывается так:

Физический смысл постоянной Больцмана

Исторически температура была впервые введена как термодинамическая величина, и для нее была установлена единица измерения - градус (см. § 3.2). После установления связи температуры со средней кинетической энергией молекул стало очевидным, что температуру можно определять как среднюю кинетическую энергию молекул и выражать ее в джоулях или эргах, т. е. вместо величины Т ввести величину Т* так, чтобы

Определенная таким образом температура связана с температурой, выражаемой в градусах, следующим образом:

Поэтому постоянную Больцмана можно рассматривать как величину, связывающую температуру, выражаемую в энергетических единицах, с температурой, выраженной в градусах.

Зависимость давления газа от концентрации его молекул и температуры

Выразив Е из соотношения (4.5.5) и подставив в формулу (4.4.10), получим выражение, показывающее зависимость давления газа от концентрации молекул и температуры:

Из формулы (4.5.6) вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же.

Отсюда следует закон Авогадро: в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Средняя кинетическая энергия поступательного движения молекул прямо пропорциональна абсолютной температуре. Коэффициент пропорциональности - постоянную Больцмана k = 10 -23 Дж/К - надо запомнить.

§ 4.6. Распределение максвелла

В большом числе случаев знание одних средних значений физических величин недостаточно. Например, знание среднего роста людей не позволяет планировать выпуск одежды различных размеров. Надо знать приблизительное число людей, рост которых лежит в определенном интервале. Точно так же важно знать числа молекул, имеющих скорости, отличные от среднего значения. Максвелл первым нашел, как эти числа можно определять.

Вероятность случайного события

В §4.1 мы уже упоминали, что для описания поведения большой совокупности молекул Дж. Максвелл ввел понятие вероятности.

Как неоднократно подчеркивалось, в принципе невозможно проследить за изменением скорости (или импульса) одной молекулы на протяжении большого интервала времени. Нельзя также точно определить скорости всех молекул газа в данный момент времени. Из макроскопических условий, в которых находится газ (определенный объем и температура), не вытекают с необходимостью определенные значения скоростей молекул. Скорость молекулы можно рассматривать как случайную величину, которая в данных макроскопических условиях может принимать различные значения, подобно тому как при бросании игральной кости может выпасть любое число очков от 1 до 6 (число граней кости равно шести). Предсказать, какое число очков выпадет при данном бросании кости, нельзя. Но вероятность того, что выпадет, скажем, пять очков, поддается определению.

Что же такое вероятность наступления случайного события? Пусть произведено очень большое число N испытаний (N - число бросаний кости). При этом в N " случаях имел место благоприятный исход испытаний (т. е. выпадение пятерки). Тогда вероятность данного события равна отношению числа случаев с благоприятным исходом к полному числу испытаний при условии, что это число сколько угодно велико:

Для симметричной кости вероятность любого выбранного числа очков от 1 до 6 равна .

Мы видим, что на фоне множества случайных событий обнаруживается определенная количественная закономерность, появляется число. Это число - вероятность - позволяет вычислять средние значения. Так, если произвести 300 бросаний кости, то среднее число выпаданий пятерки, как это следует из формулы (4.6.1), будет равно: 300 ·= 50, причем совершенно безразлично, бросать 300 раз одну и ту же кость или одновременно 300 одинаковых костей.

Несомненно, что поведение молекул газа в сосуде гораздо сложнее движения брошенной игральной кости. Но и здесь можно надеяться обнаружить определенные количественные закономерности, позволяющие вычислять статистические средние, если только ставить задачу так же, как в теории игр, а не как в классической механике. Нужно отказаться от неразрешимой задачи определения точного значения скорости молекулы в данный момент и попытаться найти вероятность того, что скорость имеет определенное значение.