Как провести заземление в частном доме. Как сделать заземление в частном доме — выбираем наиболее эффективную систему

Заземление в частном доме совсем недавно стало обязательным требованием, предъявляемым к электросетям – раньше его оборудовали только на производственных и других объектах высокой мощности. Однако, благодаря техническому прогрессу, количество домашних электроприборов постоянно увеличивается. Это привело не только к использованию трехфазных сетей в бытовых целях, но и к необходимости организации правильного заземления. Рассмотрим, как сделать заземление в частном доме или на даче, как произвести необходимые расчеты своими руками.

Зачем нужен контур защитного заземления

Сегодня мы используем в своих домах и квартирах все больше электрического оборудования и, несмотря на общее стремление технологий к экономичности и экологичности, некоторые из них обладают довольно большой потребляемой мощностью. К таким устройствам можно отнести стиральные машины, водонагревательные бойлеры, микроволновки, электрические плиты, полы с подогревом и др. По проводам, проложенным к этим устройствам, идет ток высокого напряжения и силы, поэтому нарушение изоляции может стать причиной самых серьезных последствий, вплоть до фатального исхода. Именно для предотвращения таких случаев необходимо правильно организовать защитное заземление.

Итак, защитное заземление представляет собой преднамеренное соединение всех непроводящих ток частей и конструкций электрооборудования с землей. При этом важно, что на них при нормальном функционировании сети не подается напряжение. Это (подача нагрузки) может произойти в случае нарушения герметичности изоляции и контакта с токоведущими частями.


Для более подробного описания обратимся к курсу физики, который все изучали в школе. Итак, одной из главных свойств электрического тока – способность течь в сторону меньшего сопротивления. Как раз это и происходит когда на проводах или токоведущих конструкциях оборудования нарушается изоляция. Таким образом, может появиться «пробой на корпус» — контакт кабеля с металлическим корпусом (поскольку его сопротивление (ну, практически) равно нулю). Человек или домашнее животное, прикоснувшееся к такому устройству, испытает на себе удар электрическим током.

Защитное заземление обеспечивает безопасность человека в данной ситуации. Его работа основывается на том же самом свойстве тока — течь к потребителю с более низким сопротивлением. Тело человека (и других существ) всегда обладает небольшим сопротивлением (эта величина непостоянна), а сопротивление Земли всегда равно нулю. Соответственно, «выбирая» между двумя этими объектами, ток будет течь в Землю. Однако на практике сопротивление монтируемого заземления не бывает нулевым – это связано с тем, что материалы, с помощью которых создается контур, имеют своё сопротивление. Отсюда вытекает одно из главных требований к создаваемому заземлению – его сопротивление должно быть настолько низким, чтобы при замыкании сети человеком, через него прошел ток с допустимыми параметрами, а остальная его часть ушла на контур.

Конструкция контура

Процесс сборки и присоединения заземляющего контура проводится абсолютно одинаков, вне зависимости от того, используется трехфазная сеть с напряжением 380 В, или однофазная – на 220 В. Чаще всего контур заземления конструируют путем закапывания в землю нескольких электродов, соединенных между собой (схема их соединения и называется контуром). Обычно монтируется «квадрат» или «треугольник», но есть и другие варианты. Иногда незамкнутый контур, получаемый в результате последовательного соединения электродов. Выбор того или иного способа зависит от размера здания, территории, и удобства расположения – иногда даже прибегают к созданию прямоугольного контура по периметру защищаемого здания. После соединения (чаще всего – сварки) заземляющих электродов между собой их подключают с помощью специального кабеля к распределительному электрическому щитку.

Контур нельзя располагать произвольно – чтобы правильно его установить, необходимо соблюдать определенные правила и требования. Так, например, запрещено закапывать контур слишком далеко или близко к дому – он должен залегать на расстоянии не меньше 1-2 метров от здания и не дальше 10 метров.

Большое значение имеет и глубина залегания электродов, которая варьируется в зависимости от характера и структуры грунта, отдаленности грунтовых вод. Точно известно, что контур можно закладывать на глубине ниже уровня промерзания земли – то есть, не меньше 80 см (на большей части России). В зависимости от насыщенности грунта водой, регулируется дальнейшее углубление – если она залегает высоко, то и электроды необходимо прокладывать выше к поверхности, а если же воды нет и земля малонасыщенная, контур будет необходимо забивать как можно глубже (или выполнить заземление другим способом).

Контур из черного металлопроката

Электроды для заземляющего контура как правило изготавливают своими руками из стержней черного металла. Для этой задачи неплохо подходит металлопрокат в виде стальной трубы, уголка, гладкой арматуры и двутавра. Фигурное исполнение проката не оказывает влияния на функциональные показатели схемы, поэтому выбирать его следует исходя из того, насколько удобно будет забивать. Как показывает практика, чаще всего обращаются именно к стальному уголку из-за его доступности – такой материал можно найти практически в каждом гараже или на даче.

Впрочем, один из критериев выбора все-таки есть – нужно брать прокат с площадью сечения не меньше 1,5 см2. Количество забиваемых стержней, устройство контура и его схема могут определяться и опытным путем, однако лучше, конечно, провести необходимые расчеты. Самым распространенным способом соединения является треугольник. Такая схема требует забивать стержни-электроды в вершинах треугольника. Для соединения их между собой можно использовать такой же уголок или металлическую полосу.

Стержни необходимо располагать между собой на расстоянии от 1,2 м, эта величина также должна выбираться исходя из сопротивления грунта. Приложенная ниже схема позволит вам приблизительно определить, какое сопротивление имеют различные слои грунта, перед тем, как выполнять своими руками монтаж заземления на даче, в загородном или частном доме.

Модульные системы

Безусловно, если делать контур заземления своими руками, нужно будет проводить сварочные работы, самому вычислять показатели сети и размеры контура, обеспечивать надежность соединения частей схемы. Для того чтобы избавить от лишних хлопот тех, кому они не по душе, или просто облегчить процесс монтажа, в продаже можно найти модульные заземляющие системы со всеми необходимыми составляющими.

Система комплектуется набором стальных стержней с медным покрытием. Их диаметр составляет 14мм, а длина – до 150 см, а на концах нарезана специальная резьба, тоже покрытая медью. На нее накручивается специальная латунная муфта, позволяющая соединить два стержня между собой. На нижний конец крайнего стержня накручивается конусовидная муфта-наконечник, для облегчения забивания. Примечательно, что эти выпускается несколько типов этих наконечников для различных грунтов. Помимо перечисленных компонентов, набор включает в себя специальные зажимы для металлических полос и стержней. Антикоррозийная защита частей конструкции обеспечивается с помощью специальной пасты, которой необходимо покрывать все узлы и элементы.

Модульные системы для заземления обладают рядом характерных преимуществ:

  • последовательное соединение множества стержней позволяет поместить электроды на глубину до 50 метров;
  • благодаря использованию нержавеющей стали с медным напылением в качестве материала стержни устойчивы к коррозии и обладают повышенным сроком службы;
  • схема заземления с помощью модульной системы, при необходимости, может быть размещена в пределах одного квадратного метра, что очень удобно, например, на даче;
  • монтаж не требует использования профессионального оборудования.

Для того чтобы организовать электрическую безопасность на даче и провести заземление в частный или загородный дом, можно воспользоваться готовой системой или сделать контур своими руками. При правильном монтаже обе этих схемы будут работать эффективно и безопасно. Поэтому выбор должен осуществляться исходя из финансовых или личных предпочтений и особенностей ландшафта и планировки. Главное – провести правильные расчеты заземления.

Расчет

Для расчета заземления существует два способа. Мы сначала рассмотрим тот, в котором не требуется работать с формулами и цифрами. Однако учтите, что он подходит только для тех, кто планирует своими руками изготавливать контур заземления.

Итак, для примера, мы варим треугольный контур из стальных стержней (гладкая арматура) длиной в 3 метра. Забиваем их в землю на расстоянии 1,5-2 метра друг от друга и соединяем металлическими полосками. После этого берем омметр или мультиметр и замеряем сопротивление. Согласно правилам электротехнических установок (ПУЭ) заземляющий контур должен иметь сопротивление в пределах 4-10 Ом, при этом – чем меньше, тем лучше. Если сопротивление собранной схемы не соответствует этим требованиям, необходимо забить дополнительные электроды и соединить их с уже готовыми.

Такой способ послемонтажного расчета позволяет довольно часто обойтись без предварительных замеров и вычислений. Металлический треугольник с размерами, описанными в примере, достаточно часто будет «попадать» сопротивлением в допустимые рамки. Даже если это значение будет выше 4 Ом (но, конечно, ниже 10 Ом), схема будет удовлетворять требованиям к заземлению на даче, в бане или небольшом загородном доме.

Расчет по формулам

Однако сконструированный контур может и не подойти из-за особенностей материала, земли или других причин. И процесс «достраивания» может занять немало времени, да и значительно усложнить схему. В такой ситуации, конечно, предпочтительнее было бы знать требования заранее. Кроме того, знание расчетного сопротивления необходимо при покупке модульной системы заземления.

Для вычислений нам понадобится узнать сопротивление стержней, длину горизонтального заземления (периметр треугольника) и сопротивление грунта.

Сопротивление одного вертикального электрода-заземлителя находится по следующей формуле:

где, R – сопротивление электрода, Ом; ρ экв – эквивалентное удельное сопротивление грунта, Ом*м; L – длина электрода, м; d – диаметр электрода, м; T – расстояние от середины стержня до поверхности, м.

Хорошо. Только, чтобы совершить расчеты, нам необходимо знать удельное сопротивление грунта. Для этого можно воспользоваться следующей таблицей:

Если же мы имеем дело с неоднородным грунтом, следует рассчитывать сопротивление заземления по другой формуле:

где, Ψ – сезонный климатический коэффициент; ρ 1 , ρ 2 – удельное сопротивление грунта (1 – верхний слой, 2 – нижний); H – толщина верхнего слоя; t – глубина забивания электрода.

Сезонный коэффициент заземления можно найти в следующей таблице, исходя из климатической зоны нахождения здания.

Формула для нахождения количества электродов без учета сопротивления заземления:

где, n 0 – количество электродов; R н – нормируемое сопротивление заземления.

Полученное значение необходимо округлять до целого в большую сторону. Для нахождения длины электродов-заземлителей существуют две специальные формулы:

Lr = a * (n 0 1 ); — при расположении в ряд;

Lr = a ; — при расположении замкнутым контуром.

а – расстояние между электродами

На сопротивление контура влияют также токи вертикальных электродов, поэтому, чем дальше они будут расположены друг от друга, тем меньше будет сопротивление контура. По этой причине рекомендуется размещать друг от друга на расстоянии, равном их длине.

Монтаж

Итак, перейдем непосредственно к описанию того, как выполнить заземление в частном, загородном доме или на даче своими руками. Для самостоятельной сборки заземляющего контура в загородном доме, садовом участке или на даче нам понадобится стальной уголок, прут или труба, а для стержней – оцинкованные электроды. Иногда вместо них применяют электропроводной бетон.

Как уже было сказано, для забивания стержней модульные системы комплектуются специальными коническими наконечниками, облегчающими прохождение штыря в земле.

Диаметр наконечника несколько больше диаметра прута, что значительно облегчает вбивание в грунт по сравнению с просто заострённым болгаркой нижним концом.

Забивать их можно и вручную – с помощью кувалды или молота, а также инструментом – необходим ударный перфоратор или отбойный молоток с силой удара примерно 20 Дж и специальной головкой. В модульных системах соединения электродов и заземляющим проводником выполняются с помощью специальных зажимов. При самостоятельном монтаже можно просто сварить их между собой.

Обратите внимание, что покраска, смазка или какая-либо другая консервация заземлителей запрещена – это снижает их проводимость. Учитывая негативное воздействие коррозии, приводящее к постепенному утончению стержней, необходимо брать прутья с небольшим запасом. Эти размеры указаны в ПУЭ (Правила Устройства Электроустановок) и составляют 6 мм в диаметре — для оцинкованного прута, 10 мм – для прута из черного металла, 48 мм2 (площадь в поперечнике) — для проката с прямоугольным сечением. Стенки труб и полок прямоугольной стали должны иметь толщину не меньше 4 мм.

Для соединения электродов между собой можно также использовать пруты, трубы и уголок. С помощью них заземление прокладывается от контура до распределительного электрощита. Размеры данных материалов также имеют определенные нормативы. Прутья должны быть в толщину не менее 5 мм, площадь сечения прямоугольной стали – от 24 мм2, с толщиной стенок не меньше 2,5 мм.

Безусловно, монтаж заземления потребует прокладывать заземляющие провода непосредственно по частному дому, даче или другому зданию, электробезопасность которого требуется осуществить. К внутренним заземляющим проводам также выдвигают специальные требования – их сечение должно быть равным площади сечения фазной жилы, но больше нормативного минимума (диаметр поперечника):

  • 1,5 мм – для изолированного медного;
  • 2,5 – для изолированного алюминиевого;
  • 4 мм – для медного без изоляции;
  • 6 мм – для алюминиевого без изоляции.

Коммутация всех проводников заземления с контуром должна проводиться с помощью специальной PE (Protection Earth ) шины из электротехнической бронзы, которая должна быть установлена в электрощитке.

Одной из самых распространенных ошибок, совершаемых при подключении электроприборов к заземляющему контуру своими руками, является нарушения порядки их подсоединения. Обратите внимание, что оно должно всегда проводиться параллельно – от каждого устройства на щиток должен идти отдельный заземляющий провод.

При последовательном подключении или подключении на одну площадку шины, аварийные устройства будут «тянуть», создавая таким образом помехи. Такое нарушение правил подключения электроприборов называется электромагнитной несовместимостью. Из-за нее возникает высокая опасность для жизни во время устранения аварии.

Общие требования

Заземление является одной из основных мер защиты от поражения электрическим током.

В данной статье приведена подробная, пошаговая инструкция о том как сделать заземление в частном доме своими руками.

Для начала определимся с тем, что такое заземление?

Согласно ПУЭ Заземление — это преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством. (пункт 1.7.28.)

В качестве заземляющего устройства используют металлические стержни или уголки которые вбиваются вертикально в землю (так назымаемые вертикальные заземлители ) и металлические стержни либо металлические полосы которые посредством сварки соединяют между собой вертикальные заземлители (так назымаемые горизонтальные заземлители ).

Вертикальные и горизонтальные заземлители вместе образуют конур заземления , данный контур может быть замкнутый (рисунок 1) или линейный (рисунок 2):

Контур заземления должен быть присоединен к главной заземляющей шине во вводном электрическом щитке дома с помощью заземляющего проводника в качестве которого, как правило, используется та же металлическая полоса или стержень которые применены в качестве горизонтального заземлителя.

Защитное заземление частного дома будет иметь следующий общий вид:

В свою очередь совокупность контура заземления и заземляющего проводника называют заземляющим устройством.

Замкнутый контур заземления обычно выполняют в форме треугольника со сторонами от 2 до 3 метров (в зависимости от длины вертикальных заземлителей) важно что бы расстояние между вертикальными заземлителями было не менее их длины (см. рис. 1). Замкнутый контур так же может выполняться и в других формах, например овал, квадрат и т.д. В свою очередь линейный контур представляет из себя ряд вертикальных заземлителей в количестве 3-4 штуки выстроеных в линию, при этом так же как и в случае с замкнутым контуром расстояние между ними в линейном контуре должно быть не менее их длины, т.е. от 2 до 3 метров (см. рис. 2).

Примечание: Замкнутый контур заземления считается более надежным, т.к. даже при повреждении одного из горизонтальных заземлителей данный контур сохраняет свою работоспособность.

Горизонтальные и вертикальные заземлители должны выполняться из черной или оцинкованной стали либо из меди (пункт 1.7.111. ПУЭ). Ввиду своей дороговизны медные заземлители, как правило, не применяются. Так же не следует выполнять заземлители из арматуры — наружный слой арматуры каленый из-за чего нарушается распределение тока по ее сечению, кроме того она сильнее подвержена коррозии.

Вертикальные заземлители выполняют из:

  • круглых стальных стержней диаметром минимум 16мм (рекомендуется: 20-22мм)
  • стальных уголков размерами минимум 4х40х40 (рекомендуется: 5х50х50)

Длина вертикальных заземлителей должна составлять 2-3 метра (рекомендуется не менее 2,5 м)

Горизонтальные заземлители выполняют из:

  • круглых стальных стержней диаметром минимум 10мм (рекомендуется: 16-20мм)
  • стальной полосы размерами 4х40

Заземляющий проводник выполняют из:

  • круглого стального стержня диаметром минимум 10мм
  • стальной полосы размерами минимум 4х25 (рекомендуется 4х40)

2. Порядок монтажа заземления:

ШАГ 1 — Выбираем место для монтажа

Место для монтажа выбирается как можно ближе к главному электрощитку (вводному щиту) дома в котором находится главная заземляющая шина (ГЗШ), она же PE шина.

В случае если вводной электрощиток находится внутри дома или на его наружной стене заземляющий контур монтируется около стены на которой находится электрощиток, на расстоянии примерно 1-2 метра от фундамента дома. Если же электрический щиток находится на опоре воздушной линии электропередач или на выносной стойке контур заземления можно монтировать прямо под ним.

При этом не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п. (п. 1.7.112 ПУЭ)

ШАГ 2 — Земляные работы

Выкапываем траншею в форме треугольника — для монтажа замкнутого конура заземления, либо прямую — для линейного:

Глубина траншеи должна составлять 0,8 — 1 метра

Ширина траншеи должна составлять 0,5 — 0,7 метра (для удобства проведения сварочных работ в дальнейшем)

Длина траншеи — в зависимости от выбранного количества вертикальных заземлителей и расстояний между ними.(Для треугольника используется 3 вертикальных заземлителя, для линейного контура, как правило, 3 или 4 вертикальных заземлителя)

ШАГ 3 — Монтаж вертикальных заземлителей

Расставляем в траншеи вертикальные заземлители на необходимом расстоянии друг от друга (1,5-2 метра) после чего забиваем их в землю при помощи перфоратора со специальной насадкой либо обычной кувалдой:

Предварительно концы заземлителей необходимо заострить для более легкого вхождения в грунт:

Как уже было написано выше длина вертикальных заземлителей должна составлять примерно 2-3 метра (рекомендуется минимум 2,5 метра), при этом необходимо вбить их в землю на всю длину, так что бы над дном траншеи выступала верхняя часть заземлителя на 20-25 см:

Когда все вертикальные заземлители забиты в землю можно переходить к следующему шагу.

ШАГ 4 — Монтаж горизонтальных заземлителей и заземляющего проводника:

На данном этапе необходимо соединить между собой все вертикальные заземлители с помощью горизонтальных заземлителей и к получившемуся контуру заземления приварить заземляющий проводник который будет выходить из земли на поверхность и предназначен для соединения заземляющего контура с главной заземляющей шиной вводного электрощита.

Горизонтальные и вертикальные заземлители соединяются между собой посредством сварки, при этом место соединения необходимо обварить со всех сторон для лучшего контакта.

ВАЖНО! Не допускается использование болтовых соединений! Вертикальные и горизонтальные заземлители образующие заземляющий контур, а так же заземляющий проводник в месте его присоединения к заземляющему контуру должны быть соединены при помощи сварки.

Сварные швы необходимо защитить от коррозии, для чего места сварки можно обработать битумной мастикой.

ВАЖНО! Сам заземляющий контур не должен иметь окраски! (пункт 1.7.111. ПУЭ)

В результате должно получится примерно следующее:

ШАГ 5 — Засыпаем грунтом траншею.

Здесь все просто, засыпаем траншею со смонтированным заземляющим контуром землей, так что бы над контуром было не менее 50 см грунта, как уже было указано выше.

Однако и здесь есть свои тонкости:

ВАЖНО! Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора (п. 1.7.112. ПУЭ).

ШАГ 6 — Подключение заземляющего проводника к ГЗШ вводного электрощитка (вводного устройства).

Наконец мы подошли к завершающему этапу — заземлению электрощитка дома, для этого выполняем следующие работы:

Подводим заземляющий проводник к электрощитку, так что бы до электрощитка оставалось около 1 метра, если вводной щиток находится в доме, желательно завести заземляющий проводник в здание. При этом у мест ввода заземляющих проводников в здания должен быть предусмотрен следующий опознавательный знак (п.1.7.118. ПУЭ):

Сам заземляющий проводник находящийся над поверхностью земли необходимо покрасить, он должен иметь цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (от 15 до 100 мм) желтого и зеленого цветов. (п.1.1.29. ПУЭ).

К концу заземляющего проводника со стороны электрощитка привариваем болт, на который подсоединяем гибкий медный провод сечением не менее 10 мм 2 , который так же должен иметь желто-зеленую окраску. Второй конец этого провода подключаем к главной заземляющей шине, в качестве которой внутри вводного устройства (вводного электрощитка дома) следует использовать шину РЕ (п.1.7.119. ПУЭ).

ВАЖНО! Главная заземляющая шина должна быть, как правило, медной. Допускается применение главной заземляющей шины из стали. Применение алюминиевых шин не допускается. (п.1.7.119. ПУЭ).

В итоге схема заземления щитка дома должна иметь следующий вид:

ПРИМЕЧАНИЕ: приведенная схема заземления электрощитка относится к .

В данном электрощитке установлены следующие аппараты защиты:

1 — - для защиты электропроводки от коротких замыканий и перегрузок.

С целью безопасности владельцы предпочитают делать заземление в частном доме еще на стадии проектирования здания. Такой метод защиты позволит избежать негативных последствий в результате резкого скачка напряжения в электрической сети на 220 вольт. В статье пойдет речь о том, как сделать заземление в частном доме, о его видах, последовательности монтажа и рекомендации к работе.

Для того чтобы сделать заземление в частном доме своими руками, нужно определиться с тем, какой вид защитного контура необходимо установить в конкретном случае. Контур заземления имеет два типа: рабочий и защитный.

Рабочий тип заземления позволяет обеспечить надежную и правильную работу мощного промышленного оборудования. В домашних условиях его применять не целесообразно, так как обычно в жилых помещениях нет такой техники. Чаще заземлители рабочего вида делаются для электрической сети с напряжением в 380 вольт.

При резких всплесках напряжения предотвращается поломка большинства электрических приборов и техники. Обычно такие скачки появляются при значительных повреждениях изоляции в трансформаторной обмотке. Также при ударе в дом молнии, весь заряд, который попадет на молниеприемник уйдет в землю, а вся домашняя электротехника продолжит работать стабильно.

Защитный тип заземления основывается на том, что электрическое оборудование, которые находится под воздействием переменного тока, целенаправленно подключается к «земле». Данный метод признан наиболее эффективным и самым распространенным. Если в доме проложен трехжильный кабель, тогда проблем с монтажом заземления не возникнет.

Схема сооружения заземления

Последний, защитный контур заземления, имеет множество различных схем по установке. Зачастую его применяют к электрической сети с напряжением 220в. Если установку и монтаж сделать правильно, но будет обеспечена эффективная защита дома от избыточного напряжения на длительный срок. Для этого достаточно сделать подключение «земли» в розетке, и надежную конструкцию с низким сопротивлением, которая размещается под землей.

Существует отдельный перечень бытовой техники и приборов, которые настоятельно рекомендуется заземлить любым из этих способов: бойлер, системный блок компьютера, микроволновая печь, стиральную машинку и электрическую духовку.

Контур заземления и молниеотвод

Заземляющий контур – это провод трехжильного кабеля, который соединяет электроприборы с землей. При таком подключении большинство негативных процессов в технике (отрытые фазы или короткие замыкания), которые создают блуждающий ток, будут направлены к заземляющей конструкции, а затем в землю. Схема заземляющего контура достаточно простая, и ее можно сделать своими руками, если придерживаться определенных правил.

Схема защитного контура заземления предусматривает подведение к каждой розетке провода «земли», который будет тянуться до заземляющей конструкции. При подключении бытовых приборов или электротехники к сети они будут также соединятся к заземляющей клеммой. Все провода должны подходить к распределительному щитку, а от него будет отведен отдельный кабель. С одной стороны к нему будут подсоединены заземляющие провода из жилого дома или помещения, а с другой – заземляющая конструкция, которая будет уходить на определенную глубину в землю.

Также к контуру заземления может быть присоединен молниеотвод. Молниеотвод позволит принять мощный заряд молнии и перевести его через токоотвод в землю. Если в доме уже сделаны заземляющие элементы, тогда дополнительная установка защитного устройства от молний будет проще. Эффективное устройства для приема заряда молнии обязательно должно состоять из такого комплекта: молниеприемник, токоотвод и заземляющая конструкция.

Если раньше в доме не было установлено защитного контура, тогда все эти элементы нужно устанавливать. Но когда уже готов токоотвод и элемент, соединяющий с землей всею домашнюю сеть, достаточно установить только молниеотвод. Данное устройство размещается значительно выше самой высокой точки дома, чтобы принять удар. Такую защитную систему можно сделать своими руками. Неважно как внешне будет выглядеть молниеотвод, но обязательно его сердцевина должна быть полой. Это необходимо для того, чтобы в нее был помещен проводник для подключения к заземляющему контуру.

Также молниеотвод может быть сделан на участке в виде отдельной вышки. Ее шпиль будет возвышаться на 2-3 метра над максимальной точкой жилого дома, обеспечивая надежную защиту от удара молнии. При этом заземляющий защитный контур может быть как совместным, так и раздельным (более затратный способ).

Видео “Монтаж заземления”

Этапы монтажа заземления

При желании сделать заземление дома самому, в первую очередь нужно обзавестись некоторыми знаниями из области электротехники. Также специалисты настоятельно рекомендуют использовать готовые схемы по монтажу заземления. Желательно перед началом работы ознакомиться с правилами устройства электроустановок (ПУЭ).
Затем для работы необходимо иметь заземляющую конструкцию, которая будет размещена под землей. Можно приобрести уже готовый надежный и сертифицированный комплект. Например, есть комплект EZ 15, EZ 38 или EZ 48 (маркировка определяет, какой комплект нужен для соответствующего типа грунта). При желании можно сделать похожую конструкцию самому, используя похожую схему.

Затем нужно определить, по какой системе будет устроен контур заземления в жилом доме. Самая распространенная система – ТТ. Маркировка системы ТТ означает, что нейтраль глухозаземлена, а ее открытые проводники заземлены в независимости от отношения к «земле» нейтрали источники питания или других точек питающей сети. Для системы ТТ характерно наличие заземления на сходе в помещение дома.

Сделать заземление по системе ТТ можно своими руками, если правильно следовать ее схеме. Система ТТ распространена в поселках, по ней подключают небольшие дома и строения, бытовки и сараи. Обычно система ТТ используется при питании электроустановки до 1000 вольт, и если нет возможности соблюдать условия системы TN. Для ТТ обязательно нужно подключать устройство защитного отключения. Один из самых главных недостатков системы ТТ является одновременный отказ УЗО и пробой фазы на корпус заземленного электрического прибора.

Далее для работы понадобится подходящий инструмент. Необходим комплект гаечных ключей, портативный сварочный аппарат, шлифовочная машинка, тяжелая кувалда, штыковая лопата, комплект отверток. Используя инструмент нужно сделать заземляющую конструкцию. Можно остановиться на варианте с формой треугольника.

На достаточном расстоянии от дома можно начертить равносторонний треугольник с расстоянием между вершинами 1,5 метра. На этом месте вырыть яму глубиной до 1 метра. В местах вершин забивается стальная арматура с круглым сечением длиною в 2-3 метра и толщиной не менее 35 мм. Затем верхние части арматуры нужно соединить металлической шиной шириной 4 см и толщиной 4 мм.

Для этого нужно нарезать комплект заготовок длиною 1,6-1,7 метра (с запасом). При правильной установке электродов длины шин хватит, чтобы соединить их между собой. При креплении используется сварка. Соединяющий провод, который будет подключен к проводам «земля» возле распределительного щитка, желательно выбрать с медным сечением. Затем траншея зарывается.

Затем можно приступить к подключению всех розеток в доме к «земле», которая находится в трехжильном силовом кабеле. Работать нужно с обесточенной проводкой. Когда вы убедились, что сделали подключение правильно, можно приступить к контрольной проверке.

Что запрещено согласно нормам

Очень важно, чтобы при монтаже заземления соблюдалась технология подключения и правила размещения электроустановок. При необходимости установки заземления своими руками в доме, который имеет электросеть с напряжение в 220 вольт, достаточно просто. Для этого нужно следовать существующим нормативам ПУЭ. Правила устройства электроустановок предусматривают, что при монтаже контура нельзя делать соединение или скручивание зачищенных контактов проводов снаружи. Если есть прямой доступ к таким контактам, то могут возникнуть негативные последствия. При высоких напряжениях в сети эта зона может представлять серьезную угрозу для жизни человека.

Запрещено использовать в заземляющей конструкции основных элементов, которые покрыты краской или другими покрытиями (кроме слоя окисленного металла), в том числе оксидную пленку. Нельзя делать заземление электрических бытовых приборов на газовые и отопительные трубы, а также и на водопровод. Запрещено делать при монтаже последовательное соединение. Нормами ПУЭ также предусмотрено, что в качестве заземляющих контуров не могут быть использованы железобетонные конструкции с металлическими деталями, которые находятся под напряжением. Также запрещено использовать трубы различного назначения с горючими и легко воспламеняющимися веществами.

Контрольная проверка

Чтобы убедиться, что контур заземления сделан правильно, нужно измерить значение сопротивления на расстоянии 12-15 метров. Обязательно нужно правильно распределить полярность между подключенными контактами к заземлителю («-») и комплектом измерительных электродов («+»). Между электродами расстояние 1,5 м. Если значение сопротивления меньше 4 Ом, то все сделано правильно. Если сопротивление выше, то нужно найти и исправить неполадку.

Видео “Делаем заземление в доме сами”

Данный видео-материал содержит наглядное пособие, которое позволит вам самостоятельно совершить такую операцию, как организация заземления. В комплект также входит руководство по сооружению контура.

5274 Views

По всем современным требованиям в частном доме должно быть организовано защитное заземление. Что такое защитное заземление и зачем оно нужно?

Электричество в наши дома подается по двум проводам. Один из них является нейтральным, и к нему можно прикасаться голой рукой. На втором присутствует напряжение и трогать его нельзя - ударит током. Нейтральный провод на питающей подстанции соединен с землей.

Такой способ подключения в профессиональных кругах называется системой с глухо заземленной нейтралью и обозначается TN-C. Он самый простой и дешевый, применяется очень давно, но не соответствует современным требованиям по безопасной эксплуатации электроприборов.

В прежние годы, когда у наших бабушек самым мощным прибором был утюг в 300 ватт, такая схема себя оправдывала, потому что была простой и дешевой. Никакой дополнительной защиты, кроме пробок с плавкими предохранителями на 6 ампер, не требовалось.

Но сейчас количество, мощность и сложность используемых электроприборов гигантски возросло, и для безопасной эксплуатации требуется применение специальных методов защиты. Одним из таких методов и является создание устройства защитного заземления.

В традиционном варианте оно представляет собой конструкцию из вертикальных металлических прутов , вбитых в землю на определенную глубину и соединенных между собой горизонтальными металлическими полосами. Провод от сооружения поступает во вводный щиток, где присоединяется к главной заземляющей шине (ГЗШ). Теперь в щитке имеются три провода: фазовый, нулевой и защитный.

Это дает возможность перевести систему TN-C на систему TN-C-S, наиболее безопасную для потребителя. Разводка внутри дома проводится кабелем из трех проводов, что позволяет правильно заземлить корпуса электроприборов и защитные клеммы евророзеток. Что это дает?

Во-первых, улучшаются условия работы современных электроприборов. Все приборы, которые оснащены вилкой с тремя контактами, требуют для своей надежной и безопасной работы соединения защитной клеммы с заземлением.

Обычно это блоки питания компьютеров, кухонные комбайны, микроволновые печи, грили, бойлеры, стиральные машины, пылесосы и другая бытовая техника. В этих устройствах действуют импульсные токи, вращаются электромоторы - они создают активные помехи.

За счет заземления, эти помехи полностью или частично компенсируются. Сами устройства начинают работать стабильнее, срок их службы увеличивается. У микроволновой печи, например, значительно уменьшается вредное фоновое излучение. Наличие в щитке ГЗШ позволяет провести такое защитное заземление.

Во-вторых, прямое заземление корпусов в местах с повышенной опасностью – ванны, сырые подвалы – защищает от возможности поражения электрическим током. В случае поломки прибора и попадания напряжения на корпус в цепи питания резко возрастает ток, и немедленно срабатывает устройство защитного отключения (УЗО). Без заземления высокое напряжение остается на корпусе, и человек при случайном касании получает электротравму.

Рекомендуется заземлять корпуса нагревательных бойлеров, стиральных машин, электрических духовок, газовых котлов. Это обеспечивает безопасную эксплуатацию приборов как за счет случайного попадания фазы на корпус, так и за счет уменьшения влияния на их работоспособность внешних импульсных помех. В интернете приводятся сведения, когда заземление корпуса компьютера привело к трехкратному увеличению скорости сети.

В-третьих, наличие защитного заземления дает возможность организовать молниезащиту дома.

Требования к защитному заземлению:

  • обеспечение низкого электрического сопротивления между электродами и почвой в самые неблагоприятные погодные периоды: сухое лето и морозная зима;
  • конструкция должна длительное время сохранять свои качества.

Выбор конструкции

Выбор конструкции зависит от многих факторов:

  • тип грунта;
  • наличие свободной площади;
  • доступность материалов;
  • трудоемкость изготовления;
  • финансовые возможности.

Сопротивление между элементами защитного заземления и грунтом определяется состоянием почвы, количеством и свойствами электродов, глубиной их залегания. Наиболее подходящими являются суглинок, торф, влажная глина. Трудными считаются сухие песчаные и каменистые грунты. Чем глубже залегание элементов, тем лучше контакт с грунтом и ниже сопротивление.

Для нормальных почв дешевым вариантом будет классическая конструкция заземления, когда вертикальные электроды вбиваются в землю по прямой линии или в виде треугольника и соединяются между собой горизонтальными полосками с помощью сварки.

Недостатком линейного расположения является резкое ухудшение электрических свойств сооружения при повреждении любой из горизонталей. Треугольник в этом случае более надежен.

Для начала надо выбрать место для заземления. Оно должно быть недалеко от вводного щитка, но не ближе 1,5 метра от отмостки. Вертикальные элементы заземления забиваются в землю на глубину 2,5 – 3 метра. В случае треугольного размещения стороны треугольника равны такой же величине.

При линейном расположении расстояние между вертикалями делают меньше, но не ближе, чем 1,2 метра друг от друга. Слишком близкое расположение не приносит пользы, потому что ухудшаются условия для растекания тока по земле, а стоимость и трудоемкость увеличиваются.

Горизонтальные элементы располагаются на глубине 0,5 метра от поверхности и соединяются с вертикальными при помощи сварки. Никакое другое соединение не допускается действующими правилами. От ближайшего к вводному щитку угла конструкции делается отвод к дому с помощью полоски. К концу полоски приваривается болт М10, к которому подсоединяется провод или шина для ввода в щиток.

Сечение проводника:

  • медь – не менее 10 кв. мм;
  • сталь - не менее 75 кв. мм;
  • алюминий - не менее 16 кв. мм.

На месте защитного заземления нельзя сажать кусты, деревья или разбивать грядки. Будет правильнее сделать в этом месте декоративное украшение, чтобы люди там не ходили и дети не играли.


Схема конструкции заземления

Материал для электродов

В качестве вертикальных элементов может выступать круглая сталь, уголок или труба.

Для черной стали размер уголка 50х50х5 мм, диаметр трубы не менее 32 мм со стенкой больше 3,5 мм, а диаметр круглой стали должен быть более 16 мм. Горизонтальные соединительные элементы: полоса 40х4 мм или пруток диаметром от 10 мм.

Более дорогим вариантом будет применение оцинкованной стали или меди. Для меди диаметр круглого профиля от 12 мм, а диаметр трубы 20 мм со стенкой 2 мм. Нельзя использовать арматуру! Ее поверхность прошла закалку, она менее электропроводна и сильнее подвержена коррозии.

Порядок работы

  1. Выбирается место для размещения и конструкция заземления: линия или треугольник.
  2. Подсчитывается требуемое количество горизонтальных и вертикальных элементов и доставляется на объект.
  3. Подготавливается инструмент: лопата, кувалда, сварочный аппарат с электродами, болгарка.
  4. Выкапывается траншея глубиной 60 – 70 см по профилю заземления. Отмечаются места для вертикальных элементов. Здесь рекомендуется выкопать ямки. Чем глубже они будут, тем быстрее и легче забьются вертикальные электроды.
  5. Уголки и круглая сталь заостряются и затачиваются , а труба на конце расплющивается.
  6. После забивания привариваются горизонтальные электроды и шина до вводного щитка.
  7. Места сварки очищаются от окалины и обрабатываются антикоррозийным составом, например, битумом. Другие части конструкции ничем покрывать нельзя, чтобы сохранялось хорошее электрическое соединение с почвой.
  8. Траншея засыпается однородным грунтом и утаптывается. Защитное заземление готово.

Измерение электрического сопротивления

Следующим этапом является замер сопротивления. Это вопрос не простой. Для измерения используется специальный прибор – мегомметр с набором измерительных проводов и щупов. Сама процедура проводится в несколько этапов и зависит от местных условий.

Существуют разновидности этого прибора с разными методиками измерения. Среди электриков нет единого мнения, какой способ и какой прибор самый лучший. К тому же все приспособления достаточно дороги.

Вряд ли стоит покупать недешевую вещь ради единичного применения. Поэтому имеет смысл не заниматься этим делом самостоятельно, а поручить профессионалам. Это будет быстрее и дешевле.

Конечно, если у соседа завалялся подобный прибор и он его с удовольствием одолжит, то стоит овладеть еще одним навыком.


Мегомметр типа “М-1101”

Паспорт заземления

После окончания строительно-монтажных работ желательно составить паспорт контура заземления. В паспорте надо привести чертеж с указанием мест расположения вертикальных и горизонтальных электродов, указать материал из которого они сделаны, время строительства и измеренное сопротивление. Эти данные пригодятся для ежегодных проверок состояния конструкции.

Подключение к вводному щитку

Провод, поступающий от защитного заземления в щиток, присоединяется к главной защитной шине с помощью болта. ГЗШ представляет собой медную или стальную полоску (алюминий не разрешен!), которая крепится прямо к корпусу щитка. На полоске расположены болты М10 с гайками и шайбами, к которым присоединяются провода заземления.

Заземляющий провод от каждого прибора должен крепиться к своему болту. Рядом на изоляторах закрепляется нулевая шина такой же конструкции. Обе шины соединяются между собой толстым проводом.

В дальнейшем никакого соединения нейтральных проводов с защитными не допускается! Нейтральный провод от линии также соединяется с ГЗШ. Автоматы, переключатели и УЗО (устройства защитного подключения) подключаются к шинам в соответствии с проектной схемой.

Внутри дома вся разводка проводится трехжильным проводом. Чтобы не перепутать провода между собой, фазовый провод обозначается красным или коричневым цветом, нулевой - синим или голубым, а заземляющий - желто-зеленым или белым.


Достоинства и недостатки многоэлектродного контура заземления

Главными плюсами является невысокая стоимость материалов и то, что основная работа не требует квалификации. Выкопать траншею и забить кувалдой электроды в состоянии любой здоровый человек. Обрезать и заострить арматуру с помощью болгарки уже сложнее, а явным недостатком является необходимость сварки элементов, качественно выполнить которую сможет только сварщик.

Еще одним существенным недостатком такой конструкции является относительная недолговечность сооружения, которая составляет 5 – 15 лет в зависимости от характера грунта и качества изготовления контура. Если дом построен на песчаном грунте, то будут проблемы с достижением нужной величины сопротивления заземления.

В целом этот способ можно охарактеризовать как мало затратный, но долгий и трудоемкий, пригодный не для всех типов грунта. Зато основные работы могут быть проведены самостоятельно, без найма профессиональных строителей, которые, не всегда качественно выполняют свою работу.

Модульное заземление

Существует еще один способ создания защитного заземления – модульное штыревое заземление. Это самая современная конструкция, которая обладает многими достоинствами, но она значительно дороже традиционной.

При этом случае в землю забивается полутораметровый железный штырь, покрытый цинком или медью. К этому штырю прикручивается следующий такой же штырь и забивается глубже, и так далее. Такое модульное соединение может достичь глубины 30–40 метров.

В процессе наращивания и забивания штырей проводится измерение сопротивления. Как правило, на глубине 10 метров оно уже составляет около 5 Ом, что вполне достаточно для защитного заземления. Характеристики грунта на таких глубинах более стабильны на протяжении всего года. Омедненные штыри устойчивы к коррозии, и вся система сохраняет свои свойства десятки лет.

На рынке существуют фирмы, поставляющие комплекты таких заземлителей с подробными инструкциями по монтажу. Они же могут провести все работы. Модульное заземление делается за несколько часов, не требует больших выделенных площадей и может быть выполнено даже в подвале.

С этим вариантом стоит познакомиться поближе и комплексно оценить финансовые и временные затраты в сравнении с традиционным способом.

Выбор способа и конструкции защитного заземления определяется владельцем дома.


Схема заземления частного дома
  1. Отнеситесь очень ответственно к выбору конструкции заземлителя и качеству работ. Переделывать или ремонтировать контур гораздо утомительнее и более трудоемко, чем сделать новый.
  2. Если на конец вертикального уголка наварить утолщение и заточить , то такой электрод будет легче вбивать в землю.
  3. Чем тяжелее кувалда, тем труднее махать, но легче забивать. Наиболее распространенный вес кувалды 6 – 8 кг.
  4. Электроды контура легче забивать , если они расположены строго вертикально.
  5. Убедитесь, что арматура приварена между собой по контуру соприкосновения, а не «прихвачена» за уголки. Это обеспечит надежный и долговременный электрический контакт.
  6. Не забудьте тщательно обработать места сварки антикоррозийным составом. Но только сами места!
  7. Не допускается заменять сварные соединения резьбовыми! Со временем электрический контакт в таких соединениях обязательно нарушится, и контур потеряет свои заземляющие свойства.
  8. Траншею надо заполнять той же землей, что в ней была, хорошо ее утрамбовав. Крупные камни надо выбросить. Нельзя заполнять траншею строительным мусором и обломками кирпича, это ухудшит электрические свойства почвы.
  9. Регулярно проверяйте состояние проводки во всех местах соединений проводов с клеммами.
  10. Следите за температурой вилок и розеток. Если они нагреваются, то это значит, что где-то образовался плохой контакт. Его надо обязательно найти и поджать.
  11. Провод от контура заземления должен соединяться с нейтралью только один раз - во вводном щитке. Больше ни в каком другом месте они соприкасаться не должны.
  12. Помните, что заземление обеспечивает надежную защиту только вместе с устройством защитного отключения (УЗО).
  13. Если возник вопрос – читайте ПУЭ (Правила устройства электроустановок) или проконсультируйтесь у грамотного электрика.

В статье рассказывается о том, как самостоятельно сделать заземление в частном коттедже. Мы разберёмся в принципах работы заземления, научимся рассчитывать конфигурацию этого устройства, определимся, какие понадобятся материалы.

Ещё каких-то 20-25 лет назад мы строили частные и общественные здания, даже не думая об эффективной защите человека от поражения электрическим током. С недавних пор стало всё по-другому — наши вводно-распределительные щитки становятся крупнее, в них теперь располагаются десятки автоматов защиты, несколько УЗО, и там практически всегда есть отдельная шина для заземления. Что изменилось? Электричество теперь буквально вокруг нас, в домах появилось огромное количество электроустановочных изделий , масса бытовых приборов и силовых агрегатов, которые являются потенциальными источниками опасности, кроме того, наверное, мы стали больше ценить человеческую жизнь.

Современные строительные нормы (в частности ПУЭ) требуют, чтобы для защиты человека в жилых помещениях применялась хотя бы одна из следующих мер:

  • понижение напряжения;
  • выравнивание потенциалов;
  • использование двойной изоляции проводов;
  • применение разделительных трансформаторов;
  • установка устройств защитного отключения;
  • обустройство зануления, заземления.

Конечно, к вопросу безопасности следует подходить комплексно и воспользоваться всеми возможными способами, но заземление в доме должно быть обязательно.

Заземление электроустановок — это самый надёжный и действенный метод защиты, который вкупе с другими мероприятиями делает бытовое электричество абсолютно безопасным. По сути, заземление представляет собой умышленное соединение корпусов электроустановок (элементов, которые не под напряжением) с грунтом. Для многих домовладельцев организация заземления кажется делом либо слишком дорогим и технологичным, либо слишком простым, что тоже не совсем так.

В частном доме сделать надёжное заземление технически совсем не сложно, так как расстояние до земли совсем небольшое, а свободные площади во дворе можно найти всегда. Куда меньше повезло жителям старых многоквартирных домов, где заземляющие контуры уже не работают, и то некоторые соотечественники умудряются индивидуально заземлиться с верхних этажей, прокладывая проводник от своей квартиры по стенам здания до самой земли. Между тем было бы ошибкой полагать, что любой забитый в почву железный штырь, или любая водопроводная труба станет нормальным работающим контуром заземления. Заземление — это система, состоящая из нескольких важных элементов с конкретными нормируемыми параметрами, которая функционирует по определённым принципам, плотно взаимодействует с другими системами.

Основы работы защитного заземления

В неисправном электрическом приборе (например, при повреждении изоляции питающего провода) на его корпусе может появляться напряжение. Когда человек прикасается к устройству, ток устремляется в землю, проходя через его тело и часто нанося непоправимый вред, далеко не все защитные приспособления могут среагировать или успеть достаточно быстро разорвать цепь. Почему ток идёт в землю? Потому что она легко принимает разряд, так как обладает очень большой электроёмкостью. Если току утечки (сквозной ток проводимости, протекающий между двумя или несколькими электродами) предложить другой, более простой путь, например проводник с меньшим сопротивлением — для заземления оно не должно превышать 4 Ом, то он пойдёт к земле по нему, а не через человека с сопротивлением тела 1 кОм. В цепи возникает утечка тока, и устройство защитного отключения (УЗО) за доли секунды отключает повреждённый участок.

Именно поэтому все современные электрические исполнительные устройства и агрегаты разрабатываются таким образом, чтобы к ним можно было подключить заземляющий проводник, а для разводки применяют трёхжильные провода. Это касается также всей современной бытовой техники, где корпус и один из контактов сетевой вилки соединены — для их питания применяют розетки с РЕ-контактом (усиками). Все светильники, люстры, бра имеют клеммы для присоединения «жёлтого» проводка, заземляются и металлические ящики распределительных щитков и металлоконструкции, на которых расположено силовое оборудование. В обязательном порядке заземляются все потребители сетей с напряжением переменного тока свыше 42 В, для постоянного тока — свыше 110 В. Заметим, что заземление обеспечивает не только электробезопасность людей, но также:

  • стабилизирует работу электроустановок;
  • защищает приборы от перенапряжений;
  • снижает количество сетевых помех и интенсивность электромагнитных излучений высокой частоты.

Заземляющее устройство состоит из следующих элементов:

  • заземлителя
  • заземляющих проводников

Заземляющим проводником будет любая часть заземляющего устройства, соединяющая электроустановки с заземлителем, это отдельные жилы проводов (общепринято — в жёлтой изоляции), элементы наружных и внутренних контуров, специальная шина, находящаяся в щитке.

Заземлитель — это электрод, часть цепи заземления, непосредственно контактирующая с землёй. Данный элемент обеспечивает стекание токов в грунт и их рассеивание. В зависимости от того, используются для этого заглублённые элементы строительных конструкций или созданный специально проводник, выделяются естественные и искусственные заземлители. Согласно ПУЭ предпочтение всегда необходимо отдавать использованию естественных заземлителей (пункт 1.7.35), в частном доме это может быть:

  • металлическая обсадная труба скважины;
  • любые стальные трубопроводы, в том числе трубы для прокладки электрических проводов;
  • свинцовая броня силового кабеля;
  • различные металлические стойки и опоры на улице, например, элементы забора;
  • заглублённые железобетонные и металлические элементы здания (колоны, фермы, шахты, фундаменты).

Искусственные электроды можно использовать, если сопротивление естественных заземлителей не соответствует норме, далее мы рассмотрим их подробнее.

Расчёт заземляющего устройства

Основной параметр, который необходимо рассчитать — это проводимость заземлителя. Иными словами, нам нужно подобрать электрод такой конфигурации, чтобы сопротивление заземляющего устройства не превышало нормативное. Положения ПУЭ указывают следующие цифры, которые являются допустимым максимумом:

  • 2 Ом — для линейного напряжения однофазного тока 380 вольт;
  • 4 Ом — для 220 вольт;
  • 8 Ом — для 127 вольт.

При трёхфазном токе максимальными сопротивлениями будут те же 2, 4 и 8 Ом, но только для напряжений 660, 380 и 127 вольт соответственно.

От чего же зависит проводимость заземлителя (читай, сопротивление заземляющего устройства)? Упрощённо — от площади контакта электрода с землёй и удельного сопротивления грунта. Чем крупнее заземлитель, тем меньше сопротивление, тем больше тока принимает грунт. Все формулы расчёта предлагают учитывать площадь поверхности электрода и глубину его погружения. Например, для расчёта единичного заземлителя круглого сечения имеем такую формулу:

где: d — диаметр штыря, L — длина электрода, T — расстояние от поверхности до средины заземлителя, ln — логарифм, π — константа (3,14), ρ — удельное сопротивление грунтов (Ом·м).

Обратите внимание, удельное сопротивление грунта — это основной параметр расчёта. Чем меньше это сопротивление, тем более проводимым будет наше заземление и более эффективной защита. Основные базовые цифры для определённого типа грунта можно найти в общедоступных таблицах и графиках, но многое зависит от его фактического состояния — плотности, водного баланса, температуры, сезонной глубины промерзания, наличия и концентрации в нём «электроактивных» химических веществ — щелочей, кислот, солей. Более того, на разных глубинах ситуация может существенно меняться, другими становятся физические свойства материкового основания, появляются водоносные слои, которые уменьшают сопротивление, увеличивается температура... Как правило, с увеличением глубины грунт становится более приемистым по току.

При температурах ниже нуля сопротивление грунтов резко повышается из-за замерзания воды. Поэтому возникают определённые сложности с заземлением в районах с вечномёрзлыми грунтами. По этой же причине, длина заземлителей должна быть на порядок больше, чем сезонная глубина промерзания в нормальных широтах.

В идеале, сопротивление грунта и заземляющего устройства в целом необходимо исследовать практически, тогда как формулы помогут нам сделать базовые расчёты. Часто анализ происходит непосредственно на стадии монтажа контуров — погружают электроды и в реальном времени делают замеры проводимости заземления: если сопротивление слишком велико, то увеличивают количество заземлителей или степень их заглубления.

Отметим, что заземление должно работать в любое время года, поэтому его рекомендуют проверять в самых неблагоприятных условиях (засуха, морозы). Если такой возможности нет, к результатам применяются специальные коэффициенты, учитывающие сезонные изменения сопротивления грунтов в конкретной местности.

Если для обустройства заземлителя используется несколько электродов, то порядок расчётов будет несколько другим:

  1. Производится расчёт сопротивления для каждого из них (может применяться формула, указанная выше).
  2. Показатели суммируются.
  3. Необходимо учесть «коэффициент использования».
  4. Формула выглядит следующим образом:

где: N — количество заземлителей, К и — коэффициент использования, R 1 сопротивление каждого электрода в отдельности.

Как видим, проводимость горизонтальных элементов, соединяющих электроды в единый контур, не учитывается.

Некоторую сложность может вызывать коэффициент использования — он отображает явление, при котором рядом расположенные электроды в контуре оказывают влияние друг на друга, так как зоны рассеивания токов в грунте при излишнем приближении начинают пересекаться. Чем ближе расположены отдельные заземлители друг к другу — тем больше общее сопротивление заземляющего устройства. Вокруг каждого электрода в грунте образуется рабочая сфера с радиусом равным его длине, значит, идеальное расстояние между заземлителями будет их длина в земле (L), умноженная на 2.

где: R — проектное сопротивление заземляющего устройства, R 1 — сопротивление одного электрода, К и — коэффициент использования.

Что касается схемы расположения заземлителей, то они не обязательно должны образовывать треугольник, хотя это самая распространённая конфигурация контура. Электроды могут располагаться в один ряд с последовательным соединением. Такой вариант удобен, если для обустройства заземления выделена узкая полоска земли.

Монтаж заземления

Принципиально можно выделить два типа заземляющих устройств, которые отличаются друг от друга по технике монтажа и характеристикам материалов. Первый представляет собой штыревую модульную конструкцию (заводского производства) с одним или несколькими электродами, второй — самодельный вариант с несколькими заземлителями из металлопроката. Основные их отличия заключаются лишь в организации заглублённой части — проводниковая, «верхняя», часть у них идентична.

Заводские наборы заземления технологичны и имеют ряд достоинств:

  • поставляются комплектно, элементы специально разработаны для обустройства защиты и произведены на промышленном оборудовании;
  • почти не требуют выполнения земляных, не нужны сварочные работы;
  • позволяют заглубиться на несколько десятков метров и получить очень низкое, стабильное сопротивление всего устройства.

Единственный недостаток подобных систем — это их высокая стоимость.

Материалы и инструмент для устройства заземления

Искусственные заземлители должны быть изготовлены из стального металлопроката. Для этих целей подходит:

  • уголок;
  • труба круглая или прямоугольная;
  • прут.

Чтобы защитить металл от коррозии, применяют оцинкованные электроды. Также допускается применение электропроводного бетона в качестве заземлителя.

В заводских наборах это полутораметровые цельнотянутые омеднённые штыри с резьбами на концах. На первом элементе устанавливается острый конический наконечник, отдельные штыри соединяются посредством латунных резьбовых муфт. Электроды погружаются в землю с помощью ручных ударных инструментов (патрон SDS-Max, мощность удара — около 20 Дж). Для передачи энергии от перфоратора применяется переходник и направляющая головка. Соединения заземляющего проводника с электродом осуществляется через зажим из нержавеющей стали. Для защиты соединений от коррозии и снижения сопротивления на стыках применяется специальная паста.

Внимание! Заземлители нельзя окрашивать, смазывать или консервировать какими-то иными способами, снижающими их проводимость.

Воздействие коррозии (стальная деталь постепенно утончается) должно учитываться при выборе сечения электрода, его подбирают с некоторым запасом, что обеспечивает достаточную долговечность контуру. Минимально допустимые сечения заземлителей, находящихся в грунтах, ограничиваются нормативными документами:

  • прут оцинкованный — 6 мм;
  • прут из чёрного металла — 10 мм;
  • прокат прямоугольного сечения — 48 мм 2 .

Внимание! Толщина полок прямоугольной стали или толщина стенок труб должна быть не менее 4 мм.

В качестве проводника, соединяющего в земле несколько электродов, чаще всего используется полоса, но можно применить проволоку, уголок, трубу. Этими материалами можно подвести заземление до самого электрического щита (сечение материалов имеет меньше ограничений: прут — 5 мм, прямоугольная сталь — 24 мм 2 , толщина стенок и полок — 2,5 мм).

Заземляющий проводник внутри здания должен иметь сечение, равное сечению фазной жилы, используемой в разводке по дому.

Тут также есть минимальные требования:

  • алюминиевый неизолированный — 6 мм;
  • медный неизолированный — 4 мм;
  • алюминиевый в изоляции — 2,5 мм;
  • медный в изоляции — 1,5 мм.

Для коммутации всех заземляющих проводников необходимо использовать шины заземления из электротехнической бронзы. В системе заземления ТТ эти элементы распределительного щита крепятся непосредственно на стенку металлического ящика.

Заглубление самодельного заземлителя производится с помощью кувалды, заводские комплекты забиваются отбойными молотками. В обоих случаях рекомендуем подготовить подмости или стремянку. Для работы с чёрным прокатом необходимо будет использовать ручную дуговую сварку.

Собираем заземляющее устройство

Рассмотрим порядок действий. В начальных пунктах будем указывать операции, характерные для монтажа обоих типов заземлителей.

Разметка и земляные работы. Заземлители рекомендуется монтировать в землю на дистанции около метра от фундамента. В соответствие с проектом делается разметка контура — как мы уже говорили, это может быть равносторонний треугольник, линия, окружность, несколько рядов… Расстояние между электродами принимается от 1,2 метра, делать его больше удвоенной длины заземлителя — бессмысленно. В качестве базового варианта, подходящего для большинства наших условий, можно принять треугольник со стороной 1,5-3 метра и длиной электродов в 2-3 метра.

Далее необходимо выкопать траншею глубиной около 70-80 см, минимальная глубина, которая допускается — 50 см. Ширина траншеи в точках заглубления должна обеспечивать удобство для сваривания проводников, обычно роют с откосами шириной около 0,5-0,7 метра.

Для забивания модульного одноэлектродного заземления потребуется только один приямок размером 50x50x50 см.

Подготовка электрода. Чтобы облегчить погружение заземлителя в грунт, металлопрокат с помощью болгарки заостряется, например, на уголке под углом срезаются полки, труба отрезается наискось, прут затачивается. Если применяется бывший в употреблении металл, то его, при необходимости, следует полностью очистить от защитных покрытий.

На заводской штырь модульного заземления накручивается остроконечная головка, соединение промазывается пастой.

Ударами кувалды уголки (чаще всего это уголки 50x50x5 мм) забиваются в грунт. Начало работ удобнее всего производить с подмостей. Если металл мягкий, лучше бить по заготовкам через деревянные прокладки. Оголовок заземлителя должен на 150-200 мм возвышаться над дном траншеи, чтобы мы могли соединить электроды в контур.

Заводские штыри заглубляются с помощью отбойного молотка с патроном под хвостовик SDS-Max и мощностью удара 20-25 джоулей. После погружения каждого штыря (1,5 метра), на него накручивается муфта и следующий элемент заземлителя, этот цикл повторяется, пока электрод не достигнет проектной глубины, или не произойдёт отказ (невозможность дальнейшего заглубления). В случае отказа, забиваются дополнительные заземляющие штыри, система становится многоэлектродной.

Заземлители соединяются горизонтальным проводником, как правило, наиболее удобно работать полосой 40x4 мм. Для чёрного металла здесь необходимо применять сварку, так как болтовые соединения быстро окислятся и сопротивление устройства повысится. Прихватка не подойдёт — нужен качественный длинный сварной шов.

От получившегося контура отводим полосу в сторону дома, изгибаем её и фиксируем на цоколе. На конце полосы привариваем болт М8, через который будет присоединён защитный заземляющий проводник, идущий из щита.

На последний модульный штырь устанавливается зажим-хомут и фиксируется проводник. Зажим обматывается специальной гидроизоляционной лентой.

Заводские наборы с одним электродом могут комплектоваться пластиковым ревизионным колодцем.

Проводник заземления ведётся в распределительный щит . Он может крепиться непосредственно к конструкциям здания, исключение составляют участки с повышенной влажностью — там лучше применить изоляторы. Через стены проводник проводится посредством металлических или пластиковых труб-гильз, собственно, правила прокладки применяются те же, что и для «основной» разводки (об этом будет одна из следующих статей).

В распределительном щите проводник после обжатия болтовым соединением подключается к шине заземления, которая установлена на корпусе бокса (система ТТ).

Сопротивление заземляющего устройства проверяется мультиметром, если с учётом сезонных коэффициентов (определяются Госэнергонадзором для разных широт, есть готовые таблицы) оно превышает 4 Ом, то необходимо увеличивать количество электродов.

Во время коммутации вводно-распределительного устройства жилы проводов в жёлтой изоляции (они идут от потребителей тока) также зажимаются в разъёмах шины.

При подключении розеток, приборов, светильников жёлтые заземляющие проводники коммутируем на соответствующих местах (обычно они обозначены специальным знаком — три горизонтальной полосы разного размера), например, в розетках это центральный винт.

Система, в которой контур заземления никак не связан с нулевым рабочим проводником N называется ТТ. Её рекомендуют к применению, когда варианты ТN (есть связь нейтрали и заземляющего проводника) применяться не могут, например, при неудовлетворительном состоянии воздушных линий электроснабжения. Разумеется, по этой расхожей причине она стала очень популярной. Но, необходимо отметить, что система ТТ с независимой глухозаземлённой нейтралью потребителей обязательно должна подстраховываться с помощью УЗО. Про устройства защитного отключения мы поговорим в следующей статье .