Чистый изгиб. Поперечный изгиб

Расчет балки на изгиб «вручную», по-дедовски, позволяет познать один из важнейших, красивейших, четко математически выверенных алгоритмов науки сопротивление материалов. Использование многочисленных программ типа «ввел исходные данные...

...– получи ответ» позволяет современному инженеру сегодня работать гораздо быстрее, чем его предшественникам сто, пятьдесят и даже двадцать лет назад. Однако при таком современном подходе инженер вынужден полностью доверять авторам программы и со временем перестает «ощущать физический смысл» расчетов. Но авторы программы – это люди, а людям свойственно ошибаться. Если бы это было не так, то не было бы многочисленных патчей, релизов, «заплаток» практически к любому программному обеспечению. Поэтому, мне кажется, любой инженер должен уметь иногда «вручную» проверить результаты расчетов.

Справка (шпаргалка, памятка) для расчётов балок на изгиб представлена ниже на рисунке.

Давайте на простом житейском примере попробуем ей воспользоваться. Допустим, я решил сделать в квартире турник. Определено место – коридор шириной один метр двадцать сантиметров. На противоположных стенах на необходимой высоте напротив друг друга надежно закрепляю кронштейны, к которым будет крепиться балка-перекладина – пруток из стали Ст3 с наружным диаметром тридцать два миллиметра. Выдержит ли эта балка мой вес плюс дополнительные динамические нагрузки, которые возникнут при выполнении упражнений?

Чертим схему для расчета балки на изгиб. Очевидно, что наиболее опасной будет схема приложения внешней нагрузки, когда я начну подтягиваться, зацепившись одной рукой за середину перекладины.

Исходные данные:

F1 = 900 н – сила, действующая на балку (мой вес) без учета динамики

d = 32 мм – наружный диаметр прутка, из которого сделана балка

E = 206000 н/мм^2 — модуль упругости материала балки стали Ст3

[σи] = 250 н/мм^2 — допустимые напряжения изгиба (предел текучести) для материала балки стали Ст3

Граничные условия:

Мx (0) = 0 н*м – момент в точке z = 0 м (первая опора)

Мx (1,2) = 0 н*м– момент в точке z = 1,2 м (вторая опора)

V (0) = 0 мм – прогиб в точке z = 0 м (первая опора)

V (1,2) = 0 мм – прогиб в точке z = 1,2 м (вторая опора)

Расчет:

1. Для начала вычислим момент инерции Ix и момент сопротивления Wx сечения балки. Они нам пригодятся в дальнейших расчетах. Для кругового сечения (каковым является сечение прутка):

Ix = (π*d^4)/64 = (3.14*(32/10)^4)/64 = 5,147 см^4

Wx = (π*d^3)/32 = ((3.14*(32/10)^3)/32) = 3,217 см^3

2. Составляем уравнения равновесия для вычисления реакций опор R1 и R2:

Qy = -R1+F1-R2 = 0

Мx (0) = F1*(0-b2) -R2*(0-b3) = 0

Из второго уравнения: R2 = F1*b2/b3 = 900*0.6/1.2 = 450 н

Из первого уравнения: R1 = F1-R2 = 900-450 = 450 н

3. Найдем угол поворота балки в первой опоре при z = 0 из уравнения прогиба для второго участка:

V (1.2) = V (0)+U (0)*1.2+(-R1*((1.2-b1)^3)/6+F1*((1.2-b2)^3)/6)/

U (0) = (R1*((1.2-b1)^3)/6 -F1*((1.2-b2)^3)/6)/(E*Ix)/1,2 =

= (450*((1.2-0)^3)/6 -900*((1.2-0.6)^3)/6)/

/(206000*5,147/100)/1,2 = 0,00764 рад = 0,44˚

4. Составляем уравнения для построения эпюр для первого участка (0

Поперечная сила: Qy (z) = -R1

Изгибающий момент: Мx (z) = -R1*(z-b1)

Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2)/(E*Ix)

Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6)/(E*Ix)

z = 0 м:

Qy (0) = -R1 = -450 н

Ux (0) = U (0) = 0,00764 рад

Vy (0) = V (0) = 0 мм

z = 0,6 м:

Qy (0,6) = -R1 = -450 н

Мx (0,6) = -R1*(0,6-b1) = -450*(0,6-0) = -270 н*м

Ux (0,6) = U (0)+(-R1*((0,6-b1)^2)/2)/(E*Ix) =

0,00764+(-450*((0,6-0)^2)/2)/(206000*5,147/100) = 0 рад

Vy (0,6) = V (0)+U (0)*0,6+(-R1*((0,6-b1)^3)/6)/(E*Ix) =

0+0,00764*0,6+(-450*((0,6-0)^3)/6)/ (206000*5,147/100) = 0,003 м

Балка прогнется по центру на 3 мм под тяжестью моего тела. Думаю, это приемлемый прогиб.

5. Пишем уравнения эпюр для второго участка (b2

Поперечная сила: Qy (z) = -R1+F1

Изгибающий момент: Мx (z) = -R1*(z-b1)+F1*(z-b2)

Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2+F1*((z-b2)^2)/2)/(E*Ix)

Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6+F1*((z-b2)^3)/6)/(E*Ix)

z = 1,2 м:

Qy (1,2) = -R1+F1 = -450+900 = 450 н

Мx (1,2) = 0 н*м

Ux (1,2) = U (0)+(-R1*((1,2-b1)^2)/2+F1*((1,2-b2)^2)/2)/(E*Ix) =

0,00764+(-450*((1,2-0)^2)/2+900*((1,2-0,6)^2)/2)/

/(206000*5,147/100) = -0.00764 рад

Vy (1,2) = V (1,2) = 0 м

6. Строим эпюры, используя данные полученные выше.

7. Рассчитываем напряжения изгиба в наиболее нагруженном сечении – посередине балки и сравниваем с допустимыми напряжениями:

σи = Mx max/Wx = (270*1000)/(3,217*1000) = 84 н/мм^2

σи = 84 н/мм^2 < [σи] = 250 н/мм^2

По прочности на изгиб расчет показал трехкратный запас прочности – турник можно смело делать из имеющегося прутка диаметром тридцать два миллиметра и длиной тысяча двести миллиметров.

Таким образом, вы теперь легко можете произвести расчет балки на изгиб «вручную» и сравнить с результатами, полученными при расчете по любой из многочисленных программ, представленных в Сети.

Прошу УВАЖАЮЩИХ труд автора ПОДПИСАТЬСЯ на анонсы статей.

Статьи с близкой тематикой

Отзывы

88 комментариев на «Расчет балки на изгиб — «вручную»!»

  1. Александр Воробьев 19 Июн 2013 22:32
  2. Алексей 18 Сен 2013 17:50
  3. Александр Воробьев 18 Сен 2013 20:47
  4. михамл 02 Дек 2013 17:15
  5. Александр Воробьев 02 Дек 2013 20:27
  6. Дмитрий 10 Дек 2013 21:44
  7. Александр Воробьев 10 Дек 2013 23:18
  8. Дмитрий 11 Дек 2013 15:28
  9. Игорь 05 Янв 2014 04:10
  10. Александр Воробьев 05 Янв 2014 11:26
  11. Андрей 27 Янв 2014 21:38
  12. Александр Воробьев 27 Янв 2014 23:21
  13. Александр 27 Фев 2014 18:20
  14. Александр Воробьев 28 Фев 2014 11:57
  15. Андрей 12 Мар 2014 22:27
  16. Александр Воробьев 13 Мар 2014 09:20
  17. Денис 11 Апр 2014 02:40
  18. Александр Воробьев 13 Апр 2014 17:58
  19. Денис 13 Апр 2014 21:26
  20. Денис 13 Апр 2014 21:46
  21. Александр 14 Апр 2014 08:28
  22. Александр 17 Апр 2014 12:08
  23. Александр Воробьев 17 Апр 2014 13:44
  24. Александр 18 Апр 2014 01:15
  25. Александр Воробьев 18 Апр 2014 08:57
  26. Давид 03 Июн 2014 18:12
  27. Александр Воробьев 05 Июн 2014 18:51
  28. Давид 11 Июл 2014 18:05
  29. Алимжан 12 Сен 2014 13:57
  30. Александр Воробьев 13 Сен 2014 13:12
  31. Александр 14 Окт 2014 22:54
  32. Александр Воробьев 14 Окт 2014 23:11
  33. Александр 15 Окт 2014 01:23
  34. Александр Воробьев 15 Окт 2014 19:43
  35. Александр 16 Окт 2014 02:13
  36. Александр Воробьев 16 Окт 2014 21:05
  37. Александр 16 Окт 2014 22:40
  38. Александр 12 Ноя 2015 18:24
  39. Александр Воробьев 12 Ноя 2015 20:40
  40. Александр 13 Ноя 2015 05:22
  41. Рафик 13 Дек 2015 22:20
  42. Александр Воробьев 14 Дек 2015 11:06
  43. Щур Дмитрий Дмитриевич 15 Дек 2015 13:27
  44. Александр Воробьев 15 Дек 2015 17:35
  45. Ринат 09 Янв 2016 15:38
  46. Александр Воробьев 09 Янв 2016 19:26
  47. Щур Дмитрий Дмитриевич 04 Мар 2016 13:29
  48. Александр Воробьев 05 Мар 2016 16:14
  49. Слава 28 Мар 2016 11:57
  50. Александр Воробьев 28 Мар 2016 13:04
  51. Слава 28 Мар 2016 15:03
  52. Александр Воробьев 28 Мар 2016 19:14
  53. руслан 01 Апр 2016 19:29
  54. Александр Воробьев 02 Апр 2016 12:45
  55. Александр 22 Апр 2016 18:55
  56. Александр Воробьев 23 Апр 2016 12:14
  57. Александр 25 Апр 2016 10:45
  58. Олег 09 мая 2016 17:39
  59. Александр Воробьев 09 мая 2016 18:08
  60. михаил 16 мая 2016 09:35
  61. Александр Воробьев 16 мая 2016 16:06
  62. Михаил 09 Июн 2016 22:12
  63. Александр Воробьев 09 Июн 2016 23:14
  64. Михаил 16 Июн 2016 11:25
  65. Александр Воробьев 17 Июн 2016 10:43
  66. Дмитрий 05 Июл 2016 20:45
  67. Александр Воробьев 06 Июл 2016 09:39
  68. Дмитрий 06 Июл 2016 13:09
  69. Виталий 16 Янв 2017 19:51
  70. Александр Воробьев 16 Янв 2017 20:40
  71. Виталий 17 Янв 2017 15:32
  72. Александр Воробьев 17 Янв 2017 19:39
  73. Виталий 17 Янв 2017 20:40
  74. Алексей 15 Фев 2017 02:09
  75. Александр Воробьев 15 Фев 2017 19:08
  76. Алексей 16 Фев 2017 03:50
  77. Дмитрий 09 Июн 2017 12:05
  78. Александр Воробьев 09 Июн 2017 13:32
  79. Дмитрий 09 Июн 2017 14:52
  80. Александр Воробьев 09 Июн 2017 20:14
  81. Сергей 09 Мар 2018 21:54
  82. Александр Воробьев 10 Мар 2018 09:11
  83. Евгений Александрович 06 мая 2018 20:19
  84. Александр Воробьев 06 мая 2018 21:16
  85. Виталий 29 Июн 2018 19:11
  86. Александр Воробьев 29 Июн 2018 23:41
  87. Albert 12 Окт 2019 13:59
  88. Александр Воробьев 12 Окт 2019 22:49

Глава 1. ИЗГИБ ПРЯМОЛИНЕЙНЫХ БАЛОК И БАЛОЧНЫХ СИСТЕМ

1.1. Основные зависимости теории изгиба балок

Балками принято называть стержни, работающие на изгиб под действием поперечной (нормальной к оси стержня) нагрузки. Балки – наиболее распространенные элементы судовых конструкций. Ось балки – геометрическое место центров тяжести ее поперечных сечений в недеформированном состоянии. Балка называется прямой, если осью является прямая линия. Геометрическое место центров тяжести поперечных сечений балки в изогнутом состоянии называется упругой линией балки. Принято следующее направление осей координат: ось OX совмещена с осью балки, а оси OY и OZ – с главными центральными осями инерции поперечного сечения (рис. 1.1).

Теория изгиба балок основывается на следующих допущениях.

1. Принимается гипотеза плоских сечений, согласно которой поперечные сечения балки, первоначально плоские и нормальные к оси балки, остаются после ее изгиба плоскими и нормальными к упругой линии балки. Благодаря этому деформацию изгиба балки можно рассматривать независимо от деформации сдвига, которая вызывает искажение плоскостей поперечных сечений балки и их поворот относительно упругой линии (рис. 1.2, а ).

2. Нормальными напряжениями в площадках, параллельных оси балки, пренебрегают из-заих малости (рис. 1.2, б ).

3. Балки считаются достаточно жесткими, т.е. прогибы их малы по сравнению с высотой балок, а углы поворота сечений малы по сравнению с единицей (рис.1.2, в ).

4. Напряжения и деформации связаны линейной зависимостью, т.е. справедлив закон Гука (рис. 1.2, г ).


Рис. 1.2. Допущения теории изгиба балок

Будем рассматривать появляющиеся при изгибе балки в ее сечении изгибающие моменты и перерезывающие силы как результат действия мысленно отбрасываемой по сечению части балки на оставшуюся ее часть.

Момент всех действующих в сечении усилий относительно однойиз главных осей называется изгибающим моментом. Изгибающий момент равен сумме моментов всех сил (включая опорные реакции и моменты), действующих на отброшенную часть балки, относительно указанной оси рассматриваемого сечения.

Проекция на плоскость сечения главного вектора усилий, действующих в сечении, называется перерезывающей силой. Она равна сумме проекций наплоскость сечения всех сил (включая опорные реакции), действующих на отброшенную часть балки .

Ограничимся рассмотрением изгиба балки, происходящего в плоскости XOZ . Такой изгиб будет иметь место в случае, когда поперечная нагрузка действует в плоскости, параллельной плоскости XOZ , а ее равнодействующая в каждом сечении проходит через точку, называемую центром изгиба сечения. Заметим, что для сечений балок,имеющих две осисимметрии, центр изгиба совпадает с центром тяжести, а для сечений, имеющих одну ось симметрии, он лежит на осисимметрии, но не совпадает с центром тяжести.

Нагрузка входящих в состав судового корпуса балок может быть либо распределенной (чаще всего равномерно распределенной вдоль оси балки, или изменяющейся по линейному закону), либо приложенной в виде сосредоточенных сил и моментов.

Обозначим интенсивность распределенной нагрузки (нагрузку, приходящуюся на единицу длины оси балки) через q (x ), внешнюю сосредоточенную силу – как Р , а внешний изгибающий момент – как М . Распределенная нагрузка и сосредоточенная сила положительны, если направления их действия совпадают с положительным направлением оси OZ (рис. 1.3,а ,б ). Внешний изгибающий момент положителен, если он направлен по часовой стрелке (рис.1.3,в ).

Рис. 1.3. Правило знаков для внешних нагрузок

Обозначим прогиб прямой балки при ее изгибе в плоскости XOZ через w , а угол поворота сечения – через θ. Примем правило знаков для элементов изгиба (рис. 1.4):

1) прогиб положителен, если он совпадает с положительным направлением оси OZ (рис. 1.4, а ):

2) угол поворота сечения положителен, если в результате изгиба сечение поворачивается по часовой стрелке (рис. 1.4, б );

3) изгибающие моменты положительны, если балка под их воздействием изгибается выпуклостью вверх (рис. 1.4, в );

4) перерезывающие силы положительны, если они поворачивают выделенный элемент балки против часовой стрелки (рис. 1.4, г ).


Рис. 1.4. Правило знаков для элементов изгиба

На основании гипотезы плоских сечений можно видеть (рис. 1.5), что относительное удлинение волокна ε x , отстоящего на z от нейтральной оси, будет равно

ε x = −z /ρ ,(1.1)

где ρ – радиус кривизны балки в рассматриваемом сечении.

Рис. 1.5. Схема изгиба балки

Нейтральной осью поперечного сечения называется геометрическое место точек, для которых линейная деформация при изгибе равна нулю. Между кривизной и производными от w (x ) существует зависимость

В силу принятого допущения о малости углов поворота для достаточно жестких балок величина мала по сравнению с единицей , поэтому можно считать, что

Подставив 1/ρ из (1.2) в (1.1), получим

Нормальные напряжения от изгиба σ x на основании закона Гука будут равны

Поскольку из определения балок следует, что продольное усилие, направленное вдоль оси балки, отсутствует, главный вектор нормальных напряжений должен обращаться в нуль, т.е.

где F – площадь поперечного сечения балки.

Из (1.5) получим, что статический момент площади сечения балки равен нулю. Это значит, что нейтральная ось сечения проходит через его центр тяжести.

Момент внутренних усилий, действующих в поперечном сечении относительно нейтральной оси, M y будет

Если учесть, что момент инерции площади сечения относительно нейтральной оси OY равен , и подставить это значение в (1.6), то получим зависимость, которая выражает основное дифференциальное уравнение изгиба балки

Момент внутреннихусилий в сечении относительно оси OZ будет

Поскольку оси OY и OZ по условию являются главными центральными осями сечения, то .

Отсюда следует, что при действии нагрузки в плоскости, параллельной главной плоскости изгиба, упругая линия балки будет плоской кривой. Такой изгиб называется плоским . На основании зависимостей (1.4) и (1.7) получим

Формула (1.8) показывает, что нормальные напряжения при изгибе балок пропорциональны отстоянию от нейтральной оси балки. Естественно, что это вытекаетиз гипотезы плоских сечений. В практических расчетах для определения наибольших нормальных напряжений часто используют момент сопротивления сечения балки

где |z | max – абсолютное значение отстояния наиболее удаленного волокна от нейтральной оси.

В дальнейшем нижние индексы y для упрощения опущены.

Между изгибающим моментом, перерезывающей силой и интенсивностью поперечной нагрузки существует связь, вытекающая из условия равновесия элемента, мысленно выделенного из балки.

Рассмотрим элемент балки длиной dx (рис. 1.6). Здесь принимается, что деформации элемента пренебрежимо малы.

Если в левом сечении элемента действует момент M и перерезывающая сила N , то в правом его сечении соответствующие усилия будут иметь приращения. Рассмотрим только линейные приращения .

Рис.1.6. Усилия, действующие на элемент балки

Приравняв нулю проекцию на ось OZ всех усилий, действующих на элемент, и момент всех усилий относительно нейтральной оси правого сечения, получим:

Из этих уравнений с точностью до величин высшего порядка малости получим

Из (1.11) и (1.12) следует, что

Зависимости (1.11)–(1.13) известны под названием теоремы Журавского–Шведлера .Из этих зависимостей следует, что перерезывающая сила и изгибающий момент могут быть определены путем интегрирования нагрузки q :


где N 0 и M 0 – перерезывающая сила и изгибающий момент в сечении, соответствующем x = x 0 , которое принимается за начало отсчета; ξ, ξ 1 – переменные интегрирования .

Постоянные N 0 и M 0 для статически определимых балок могут быть определены из условий их статического равновесия.

Если балка статически определимая, изгибающий момент влюбом сечении может быть найден по (1.14), и упругая линия определяется путем двукратного интегрирования дифференциального уравнения (1.7). Однако в конструкциях судового корпуса статически определимые балки встречаются крайне редко. Большинство балок, входящих в состав судовых конструкций, образует многократно статически неопределимые системы. В этих случаях для определения упругой линии уравнение (1.7) является неудобным, и целесообразно перейти к уравнению четвертого порядка.

1.2. Дифференциальное уравнение изгиба балок

Дифференцируя уравнение (1.7) для общего случая, когда момент инерции сечения является функцией от x , с учетом (1.11) и (1.12) получим:


где штрихами обозначено дифференцирование по x .

Для призматических балок, т.е. балок постоянного сечения, получим следующие дифференциальные уравнения изгиба:

Обыкновенное неоднородное линейное дифференциальное уравнение четвертого порядка (1.18) можно представить в виде совокупности четырех дифференциальных уравнений первого порядка:

Используем далееу равнение (1.18) или систему уравнений (1.19) для определения прогиба балки (ее упругой линии) и всех неизвестных элементов изгиба: w (x ), θ (x ), M (x ), N (x ).

Интегрируя (1.18) последовательно 4 раза (считая, чтолевому концу балки соответствует сечение x = x a ), получим:


Нетрудно видеть, что постоянные интегрирования N a , M a , θ a , w a имеют определенный физический смысл, а именно:

N a – перерезывающая сила в начале отсчета, т.е. при x = x a ;

M a – изгибающий момент в начале отсчета;

θ a – угол поворота в начале отсчета;

w a – прогиб в этом же сечении.

Для определения указанных постоянных всегда можно составить четыре граничных условия – по два для каждого конца однопролетной балки. Естественно, что граничные условия зависят от устройства концов балки. Простейшие условия соответствуют шарнирному опиранию на жесткие опоры или жесткой заделке.

При шарнирном опирании конца балки на жесткой опоре (рис. 1.7, а ) прогиб балки и изгибающий момент равны нулю:

При жесткой заделке на жесткой опоре (рис. 1.7, б ) равны нулю прогиб и угол поворота сечения:

Если конец балки (консоль) свободен (рис. 1.7, в ), то в этом сечении равны нулю изгибающий момент и перерезывающая сила:

Возможна ситуация, связанная со скользящей заделкой или заделкой по симметрии (рис. 1.7, г ). Это приводит к таким граничным условиям:

Заметим, что граничные условия (1.26), касающиеся прогибов и углов поворота, принято называть кинематическими , а условия (1.27) – силовыми .


Рис. 1.7. Виды граничных условий

В судовых конструкциях часто приходится иметь дело с более сложными граничными условиями, которые соответствуют опиранию балки на упругие опоры или упругой заделке концов.

Упругой опорой (рис. 1.8, а ) называется опора,имеющая просадку, пропорциональную действующей на опору реакции. Будем считать реакцию упругой опоры R положительной, если она действует на опору в сторону положительного направления оси OZ . Тогда можно записать:

w = AR ,(1.29)

где A – коэффициент пропорциональности, называемый коэффициентом податливости упругой опоры.

Этот коэффициент равен просадке упругой опоры при действии реакции R = 1, т.е. A = w R = 1 .

Упругими опорами в судовых конструкциях могут быть балки, подкрепляющиерассматриваемую балку, или пиллерсы и другие конструкции, работающие на сжатие.

Для определения коэффициента податливости упругой опоры A необходимо загрузить соответствующую конструкцию единичной силой и найти абсолютную величину просадки (прогиб) в месте приложения силы. Жесткая опора – частный случай упругой опоры при A = 0.

Упругой заделкой (рис. 1.8, б ) называется такая опорная конструкция, которая препятствует свободному повороту сечения и в которой угол поворота θ в этом сечении пропорционален моменту, т.е. имеетместо зависимость

θ =Â M .(1.30)

Множитель пропорциональности Â называется коэффициентом податливости упругой заделки и может быть определен, как угол поворота упругой заделки при M = 1, т.е. Â = θ M = 1 .

Частным случаем упругой заделки при Â = 0 является жесткая заделка. В судовых конструкциях упругими заделками обычно являются балки, нормальные к рассматриваемой и лежащие в этой же плоскости. Например, упруго заделанными на шпангоутах можно считать бимсы и т.п.


Рис. 1.8. Упругая опора (а ) и упругая заделка (б )

Если концы балки длиной L оперты на упругие опоры (рис. 1.9), то реакции опор в концевых сечениях равны перерезывающим силам, и граничные условия можно записать:

Знак минус в первом условии (1.31) принят потому, что положительная перерезывающая сила в левом опорном сечении соответствует реакции, действующей на балку сверху вниз, а на опору – снизу вверх.

Если концы балки длиной L упругозаделанные (рис. 1.9), то для опорных сечений, учитывая правило знаков для углов поворота и изгибающих моментов, можно записать:

Знак минус во втором условии (1.32) принят потому, что при положительном моменте в правом опорном сечении балки момент, действующий на упругую заделку, направлен против часовой стрелки, а положительный угол поворота в этом сечении направлен по часовой стрелке, т.е. направления момента и угла поворота не совпадают.

Рассмотрение дифференциального уравнения (1.18) и всех граничных условий показывает, что они линейны относительно как входящих в них прогибов и их производных, так и действующих на балку нагрузок. Линейность является следствием допущений о справедливости закона Гука и малости прогибов балки.

Рис. 1.9. Балка, оба конца которой упруго оперты и упруго заделаны (а );

усилия в упругих опорах и упругих заделках, соответствующие положительным
направлениям изгибающего момента и перерезывающей силы (б )

При действии на балку нескольких нагрузок каждый элемент изгиба балки (прогиб, угол поворота, момент и перерезывающая сила) представляет собой сумму элементов изгиба от действия каждой из нагрузок в отдельности. Это очень важное положение, называемое принципом наложения, или принципом суммирования действия нагрузок, широко используется в практических расчетах и, в частности, для раскрытия статической неопределимости балок.

1.3. Метод начальных параметров

Общий интеграл дифференциального уравнения изгиба балки может быть использован для определения упругой линии однопролетной балки в том случае, когда нагрузка балки представляет собой непрерывную функцию координаты на протяжении всего пролета. Если в составе нагрузки встречаются сосредоточенные силы, моменты или распределенная нагрузка действует на части длины балки (рис. 1.10), то непосредственно использовать выражение (1.24) нельзя. В этом случае можно было бы, обозначив упругие линии на участках 1, 2 и 3 через w 1 , w 2 , w 3 , выписать для каждойиз них интеграл в виде (1.24) и найти все произвольные постоянные из граничных условий на концах балки и условий сопряжения на границах участков. Условия сопряжения в рассматриваемом случае выражаются так:

при x=a 1

при x=a 2

при x=a 3

Нетрудно заметить, что такой путь решения задачи приводит к большому числу произвольных постоянных, равному 4n , где n – число участков по длине балки.

Рис. 1.10. Балка, на отдельных участках которой приложены нагрузки разных типов

Значительно удобнее представить упругую линию балки в виде

где члены за двойной чертой учитываются при x ³ a 1, x ³ a 2 и т.д.

Очевидно, что δ 1 w (x )=w 2 (x )−w 1 (x ); δ 2 w (x )=w 3 (x )−w 2 (x ); и т.д.

Дифференциальные уравнения для определения поправок к упругой линии δ i w (x ) на основании (1.18) и (1.32) можно записать в виде

Общий интеграл для любой поправки δ i w (x ) к упругой линии может быть записан в виде (1.24) при x a = a i . При этом параметры N a , M a , θ a , w a имеют смысл изменения (скачка) соответственно: в перерезывающей силе, изгибающем моменте, угле поворота и стрелке прогиба при переходе через сечение x = a i . Такой прием называется методом начальных параметров. Можно показать, чтодля балки, приведенной на рис. 1.10, уравнение упругой линии будет


Таким образом, метод начальных параметров дает возможность и при наличии разрывности в нагрузках записать уравнение упругой линии в виде, содержащем лишь четыре произвольных постоянных N 0 , M 0 , θ 0 , w 0 , которые определяются из граничных условий по концам балки.

Заметим, что для большого числа вариантов встречающихся на практике однопролетных балок составлены подробные таблицы изгиба, которые позволяют легко найти прогибы, углы поворота и другие элементы изгиба.

1.4. Определение касательных напряжений при изгибе балок

Принятая в теории изгиба балок гипотеза плоских сечений приводит к тому, что деформация сдвига в сечении балки оказывается равной нулю, и мы неимеем возможности, используя закон Гука, определить касательные напряжения. Однако поскольку в общем случае в сечениях балки действуют перерезывающие силы, то должны возникать соответствующие им касательные напряжения. Это противоречие (которое является следствием принятой гипотезы плоских сечений) можно обойти, рассматривая условия равновесия. Будем считать, что при изгибе балки, составленной из тонких полос, касательные напряжения в поперечном сечении каждой из этих полос равномерно распределены по толщине и направлены параллельно длинным сторонам ее контура. Это положение практически подтверждается точными решениями теории упругости. Рассмотрим балку открытого тонкостенного двутаврового профиля. На рис. 1.11 показано положительное направление касательных напряжений в поясках и стенке профиля при изгибе в плоскости стенки балки. Выделим продольным сечением I - I и двумя поперечными сечениями элемент длиной dx (рис. 1.12).

Обозначим касательное напряжение в указанном продольном сечении через τ, а нормальные усилия в начальном поперечном сечении через T . Нормальные усилия в конечном сечении будут иметь приращения. Рассмотрим только линейные приращения, тогда .

Рис. 1.12. Продольные усилия и касательные напряжения
в элементе пояска балки

Условие статического равновесия выделенногоиз балки элемента (равенство нулю проекций усилий на ось OX ) будет

где ; f – площадь части профиля, отсеченного линией I – I ; δ– толщина профиля в месте сечения.

Из (1.36) следует:

Поскольку нормальные напряжения σ x определяются формулой (1.8), то

При этом мы полагаем, что балка имеет постоянное по длине сечение. Статический момент части профиля (отсеченной линией I – I ) относительно нейтральной оси сечения балки OY является интегралом

Тогда из (1.37) для абсолютной величины напряжений получим:

Естественно, что полученная формула для определения касательных напряжений справедлива и для любого продольного сечения, например II – II (см. рис. 1.11), и статический момент S отс вычисляется для отсеченной части площади профиля балки относительно нейтральной оси без учета знака.

Формула (1.38) по смыслу проведенного вывода определяет касательные напряжения в продольных сечениях балки. Из теоремы о парности касательных напряжений, известной из курса сопротивления материалов, следует, что такие же касательные напряжения действуют в соответствующих точках поперечного сечения балки. Естественно, что проекция главного вектора касательных напряжений на ось OZ должна быть равна перерезывающей силе N в данном сечении балки. Поскольку в поясках балки такого типа, как показано на рис. 1.11, касательные напряжения направлены по оси OY , т.е. нормально к плоскости действия нагрузки, и являются в целом уравновешенными, перерезывающая сила должна уравновешиваться касательными напряжениями в стенке балки. Распределение касательных напряжений по высоте стенки следует закону изменения статического момента S отс отсеченной части площади относительно нейтральной оси (при постоянной толщине стенки δ ).

Рассмотрим симметричное сечение двутавровой балки с площадью пояска F 1 и площадью стенки ω = (рис. 1.13).

Рис. 1.13. Сечение двутавровой балки

Статический момент отсеченной части площади для точки, отстоящей на z от нейтральной оси, будет

Как видно из зависимости (1.39), статическиймомент изменяется с z по закону квадратичной параболы. Наибольшее значение S отс , а следовательно, и касательных напряжений τ, получится у нейтральной оси, где z = 0:

Наибольшее касательное напряжениев стенке балки у нейтральной оси

Поскольку момент инерции сечения рассматриваемой балки равен

то наибольшее касательное напряжение будет


Отношение N /ω есть не что иное, как среднее касательное напряжение в стенке, вычисленное в предположенииравномерного распределения напряжений. Принимая, например, ω = 2F 1 , по формуле (1.41) получим

Таким образом, у рассматриваемой балки наибольшее касательное напряжение в стенке у нейтральной оси лишь на 12,5% превышает среднее значение этих напряжений. Следует отметить, что у большинства профилей балок, применяемых в судовом корпусе, превышение максимальных касательных напряжений над средними составляет 10–15%.

Если рассмотреть распределение касательных напряжений при изгибе в сечении балки, показанной на рис. 1.14, то можно видеть, что они образуют момент относительно центра тяжести сечения. В общем случае изгиб такой балки в плоскости XOZ будет сопровождаться закручиванием.

Изгиб балки не сопровождается закручиванием, если нагрузка будет действовать в плоскости, параллельной XOZ , проходящей через точку, называемую центром изгиба. Эта точка характеризуетсятем, что момент всех касательных усилий в сечении балки относительно нее равен нулю.

Рис. 1.14. Касательные напряжения при изгибе швеллерной балки (точка А – центр изгиба)

Обозначив отстояние центра изгиба А от оси стенки балки через е , запишем условие равенства нулю моментакасательных усилий относительно точки А :

где Q 2 – касательное усилие в стенке, равное перерезывающей силе, т.е. Q 2 =N ;

Q 1 =Q 3 – усилие в пояске, определяемое на основании (1.38) зависимостью

Деформация сдвига (или угол сдвига) γ изменяется по высоте стенки балки так же, как и касательные напряжения τ, достигая наибольшей величины у нейтральной оси.

Как было показано, у балок с поясками изменение касательных напряжений по высоте стенки весьма незначительно. Это позволяет в дальнейшем рассматривать некоторый средний угол сдвига в стенке балки

Деформация сдвига приводит к тому, что прямой угол между плоскостью поперечного сечения балки и касательной к упругой линии изменяется на величину γ ср . Упрощенная схема деформации сдвига элемента балки показана на рис. 1.15.

Рис. 1.15. Схема деформации сдвига элемента балки

Обозначив стрелку прогиба, вызванную сдвигом через w сдв , можно записать:

С учетом правила знаков для перерезывающей силы N и угла поворота найдем

Поскольку ,

Интегрируя (1.47), получим

Постоянная a , входящая в (1.48), определяет перемещение балки как твердого тела и может быть принята равной любой величине, так как при определении суммарной стрелки прогиба от изгиба w изг и сдвига w сдв

появится сумма постоянных интегрирования w 0 +a , определяемая из граничных условий. Здесь w 0 – прогиб от изгиба в начале координат.

Положим в дальнейшем a =0. Тогда окончательно выражение для упругой линии, вызванной сдвигом, примет вид

Изгибная и сдвиговая составляющие упругой линии показаны на рис. 1.16.


Рис. 1.16. Изгибная (а ) и сдвиговая (б ) составляющие упругой линии балки

В рассмотренном случае угол поворота сечений при сдвиге равен нулю, поэтому и с учетом сдвига углы поворота сечений, изгибающие моменты и перерезывающие силы связаны только с производными упругой линии от изгиба:

Несколько иначе обстоит дело в случае действия на балку сосредоточенных моментов, которые, как будет показано ниже, не вызывают прогибов от сдвига, а приводят лишь к дополнительному повороту сечений балки.

Рассмотрим свободно опертую на жесткие опоры балку, в левом сечении которой действует момент М . Перерезывающая сила в этом случае будет постоянной и равной

Для правого опорного сечения соответственно получим

.(1.52)

Выражения (1.51)и (1.52) можно переписать в виде


Выражения в круглых скобках характеризуют относительную добавку к углу поворота сечения, вызванную сдвигом.

Если рассмотреть, например, свободно опертую балку, загруженную посередине ее пролета силой Р (рис. 1.18), то прогиб балки под силой будет равен

Прогиб от изгиба можно найти по таблицам изгиба балок. Прогиб от сдвига определяется по формуле (1.50) с учетом того, что .

Рис. 1.18. Схема свободно опертой балки, загруженной сосредоточенной силой

Как видно из формулы (1.55), относительная добавка к прогибу балки за счет сдвига имеет такую же структуру, что и относительная добавка к углу поворота, но с другим численным коэффициентом.

Введем обозначение

где β – численный коэффициент, зависящий от рассматриваемой конкретной задачи, устройства опор и нагрузки балки.

Проанализируем зависимость коэффициента k от различных факторов.

Если учесть, что , получим вместо (1.56)

Момент инерции сечения балки всегда может быть представлен в виде

,(1.58)

где α – численный коэффициент, зависящий от формы и характеристик поперечного сечения. Так, для балки двутаврового профиля по формуле (1.40) при ω =2F 1 найдем I = ωh 2 /3, т.е. α =1/3.

Заметим, что с ростом размеров поясков балки коэффициент α будет увеличиваться.

С учетом (1.58) вместо (1.57) можно записать:

Таким образом, значение коэффициента k существенно зависит от отношения длины пролета балки к ее высоте, от формы сечения (через коэффициент α ), устройства опор и нагрузки балки (через коэффициент β ). Чем относительно длиннее балка (h / L мало), тем меньше влияние деформации сдвига. Для балок прокатного профиля, имеющих отношение h / L меньше 1/10÷1/8, поправка на сдвиг практически может не учитываться.

Однако для балок с широкими поясками, таких, например, как киль, стрингеры и флоры в составе днищевых перекрытий влияние сдвига и при указанных h / L может оказаться значительным.

Следует отметить, что деформации сдвига оказывают влияние не только на увеличение прогибов балок, но в некоторых случаях и на результаты раскрытия статической неопределимости балок и балочных систем.

При расчете изгибаемых элементов строительных конструкций на прочность применяется метод расчета по предельным состояниям.

В большинстве случаев основное значение при оценке прочности балок и рам имеют нормальные напряжения в поперечных сечениях. При этом наибольшие нормальные напряжения, действующие в крайних волокнах балки, не должны превышать некоторой допустимой для данного материала величины. В методе расчета по предельным состояниям эта величина принимается равной расчетному сопротивлению R, умноженному на коэффициент условий работы у с.

Условие прочности имеет следующий вид:

Значения R и у с для различных материалов приведены в СНиП по строительным конструкциям.

Для балок из пластичного материала, одинаково сопротивляющегося растяжению и сжатию, целесообразно использовать сечения с двумя осями симметрии. В этом случае условие прочности (7.33) с учетом формулы (7.19) записывается в виде

Иногда по конструктивным соображениям применяются балки с несимметричным сечением типа тавра, разнополочного двутавра и т.п. В этих случаях условие прочности (7.33) с учетом (7.17) записывается в виде

В формулах (7.34) и (7.35) W z и W HM - моменты сопротивления сечения относительно нейтральной оси Oz„ М нб - наибольший по абсолютной величине изгибающий момент от действия расчетных нагрузок, т.е. с учетом коэффициента надежности по нагрузке у^.

Сечение балки, в котором действует наибольший по абсолютной величине изгибающий момент, называется опасным сечением.

При расчете на прочность элементов конструкций, работающих на изгиб, решаются следующие задачи: проверка прочности балки; подбор сечения; определение несущей способности (грузоподъемности) балки, т.е. определение значений нагрузок, при которых наибольшие напряжения в опасном сечении балки не превышают значения y c R.

Решение первой задачи сводится к проверке выполнения условий прочности при известных нагрузках, форме и размерах сечения и свойствах материала.

Решение второй задачи сводится к определению размеров сечения заданной формы при известных нагрузках и свойствах материала. Вначале из условий прочности (7.34) или (7.35) определяется величина требуемого момента сопротивления

а затем устанавливаются размеры сечения.

Для прокатных профилей (двутавры, швеллеры) по величине момента сопротивления подбор сечения производится по сортаменту. Для непрокатных сечений устанавливаются характерные размеры сечения.

При решении задачи по определению грузоподъемности балки вначале из условий прочности (7.34) или (7.35) находится величина наибольшего расчетного изгибающего момента по формуле

Затем изгибающий момент в опасном сечении выражается через приложенные к балке нагрузки и из полученного выражения определяются соответствующие величины нагрузок. Например, для стальной двутавровой балки 130, изображенной на рис. 7.47, при R = 210 МПа, у с = 0,9, W z = 472 см 3 находим

По эпюре изгибающих моментов находим


Рис. 7.47

В балках, нагруженных большими по величине сосредоточенными силами, близко расположенными к опорам (рис. 7.48), изгибающий момент М нб может оказаться сравнительно небольшим, а поперечная сила 0 нб по абсолютной величине может быть значительной. В этих случаях необходимо производить проверку прочности балки по наибольшим касательным напряжениям т нб. Условие прочности по касательным напряжениям можно записать в виде

где R s - расчетное сопротивление материала балки при сдвиге. Значения R s для основных строительных материалов приведены в соответствующих разделах СНиП.

Касательные напряжения могут достигать значительной величины в стенках двутавровых балок, особенно в тонких стенках составных балок.

Расчет на прочность по касательным напряжениям может иметь решающее значение для деревянных балок, так как дерево плохо сопротивляется скалыванию вдоль волокон. Так, например, для сосны расчетное сопротивление растяжению и сжатию при изгибе R = 13 МПа, а при скалывании вдоль волокон R CK = 2,4 МПа. Такой расчет необходим также при оценке прочности элементов соединений составных балок - сварных швов, болтов, заклепок, шпонок и т.п.

Условие прочности на скалывание вдоль волокон для деревянной балки прямоугольного сечения с учетом формулы (7.27) можно записать в виде

Пример 7.15. Для балки, показанной на рис. 7.49, а, построим эпюры Q y и M v подберем сечение балки в виде стального прокатного двутавра и построим эпюры с х и т в сечениях с наибольшими Q y и M z . Коэффициент надежности по нагрузке y f = 1,2, расчетное сопротивление R = 210 МПа = 21 кН/см 2 , коэффициент условий работы у с = 1,0.

Расчет начинаем с определения опорных реакций:

Вычислим значения Q y и M z в характерных сечениях балки.



Поперечные силы в пределах каждого участка балки являются постоянными величинами и имеют скачки в сечениях под силой и на опоре В. Изгибающие моменты изменяются по линейному закону. Эпюры Q y и M z приведены на рис. 7.49, б, в.

Опасным является сечение в середине пролета балки, где изгибающий момент имеет наибольшее значение. Вычислим расчетное значение наибольшего изгибающего момента:

Требуемый момент сопротивления равен

По сортаменту принимаем сечение 127 и выписываем необходимые геометрические характеристики сечения (рис. 7.50, а):



Вычислим значения наибольших нормальных напряжений в опасном сечении балки и проверим ее прочность:

Прочность балки обеспечена.

Касательные напряжения имеют наибольшие значения на участке балки, где действует наибольшая по абсолютной величине поперечная сила (2 нб = 35 кН.

Расчетное значение поперечной силы

Вычислим значения касательных напряжений в стенке двутавра на уровне нейтральной оси и на уровне сопряжения стенки с полками:


Эпюры с х и х, в сечении л: = 2,4 м (справа) приведены на рис. 7.50, б, в.

Знак касательных напряжений принят отрицательным, как соответствующий знаку поперечной силы.

Пример 7.16. Для деревянной балки прямоугольного поперечного сечения (рис. 7.51, а) построим эпюры Q и M z , определим высоту сечения h из условия прочности, приняв R = = 14 МПа, уу= 1,4 и у с = 1,0, и проверим прочность балки на скалывание по нейтральному слою, приняв R CK = 2,4 МПа.

Определим опорные реакции:

Вычислим значения Q v и M z
в характерных сечениях балки.


В пределах второго участка поперечная сила обращается в нуль. Положение этого сечения находим из подобия треугольников на эпюре Q y:

Вычислим экстремальное значение изгибающего момента в этом сечении:

Эпюры Q y и M z приведены на рис. 7.51, б, в.

Опасным является сечение балки, где действует максимальный изгибающий момент. Вычислим расчетное значение изгибающего момента в этом сечении:

Требуемый момент сопротивления сечения

Выразим с помощью формулы (7.20) момент сопротивления через высоту сечения h и приравняем его требуемому моменту сопротивления:

Принимаем прямоугольное сечение 12x18 см. Вычислим геометрические характеристики сечения:

Определим наибольшие нормальные напряжения в опасном сечении балки и проверим ее прочность:

Условие прочности выполняется.

Для проверки прочности балки на скалывание вдоль волокон надо определить значения максимальных касательных напряжений в сечении с наибольшей по абсолютной величине поперечной силой 0 нб = 6 кН. Расчетное значение поперечной силы в этом сечении

Максимальные касательные напряжения в поперечном сечении действуют на уровне нейтральной оси. Согласно закону парности они действуют также в нейтральном слое, стремясь вызвать сдвиг одной части балки относительно другой части.

Используя формулу (7.27), вычислим значение т тах и проверим прочность балки на скалывание:

Условие прочности на скалывание выполняется.

Пример 7.17. Для деревянной балки круглого сечения (рис. 7.52, а) построим эпюры Q y n M z n определим из условия прочности необходимый диаметр сечения. В расчетах примем R = 14 МПа, уу = 1,4 и у с = 1,0.

Определим опорные реакции:

Вычислим значения Q и М 7 в характерных сечениях балки.


Эпюры Q y и M z приведены на рис. 7.52, б, в. Опасным является сечение на опоре В с наибольшим по абсолютной величине изгибающим моментом М нб = 4 кНм. Расчетное значение изгибающего момента в этом сечении

Вычислим требуемый момент сопротивления сечения:

Используя формулу (7.21) для момента сопротивления круглого сечения, найдем требуемый диаметр:

Примем D= 16 см и определим наибольшие нормальные напряжения в балке:


Пример 7.18. Определим грузоподъемность балки коробчатого сечения 120x180x10 мм, нагруженной согласно схеме на рис. 7.53, а. Построим эпюры с х и т в опасном сечении. Материал балки - сталь марки ВСтЗ, R = 210 МПа = 21 кН/см 2 , У/= U, Ус = °’ 9 -

Эпюры Q y и M z приведены на рис. 7.53, а.

Опасным является сечение балки вблизи заделки, где действует наибольший по абсолютной величине изгибающий момент М нб - Р1 = 3,2 Р.

Вычислим момент инерции и момент сопротивления коробчатого сечения:

Учитывая формулу (7.37) и полученное значение для Л/ нб, определим расчетное значение силы Р:

Нормативное значение силы

Наибольшие нормальные напряжения в балке от действия расчетной силы

Вычислим статический момент половины сечения ^1/2 и статический момент площади поперечного сечения полки S n относительно нейтральной оси:

Касательные напряжения на уровне нейтральной оси и на уровне сопряжения полки со стенками (рис. 7.53, б) равны:


Эпюры о х и т ух в сечении вблизи заделки приведены на рис. 7.53, в, г.

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

которая используется при построении и проверке эпюр Q и M.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:

, где н.о. — это нейтральная ось

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.

Балка является основным элементом несущей конструкции сооружения. При строительстве важно провести расчет прогиба балки. В реальном строительстве на данный элемент действует сила ветра, нагружение и вибрации. Однако при выполнении расчетов принято принимать во внимание только поперечную нагрузку или проведенную нагрузку, которая эквивалентна поперечной.

Балки в доме

При расчете балка воспринимается как жесткозакрепленный стержень, который устанавливается на двух опорах. Если она устанавливается на трех и более опорах, расчет ее прогиба является более сложным, и провести его самостоятельно практически невозможно. Основное нагружение рассчитывается как сумма сил, которые действуют в направлении перпендикулярного сечения конструкции. Расчетная схема требуется для определения максимальной деформации, которая не должна быть выше предельных значений. Это позволит определить оптимальный материал необходимого размера, сечения, гибкости и других показателей.

Для строительства различных сооружений применяются балки из прочных и долговечных материалов. Такие конструкции могут отличаться по длине, форме и сечению. Чаще всего используются деревянные и металлические конструкции. Для расчетной схемы прогиба большое значение имеет материал элемента. Особенность расчета прогиба балки в данном случае будет зависеть от однородности и структуры ее материала.

Деревянные

Для постройки частных домов, дач и другого индивидуального строительства чаще всего используются деревянные балки. Деревянные конструкции, работающие на изгиб, могут использоваться для потолочных и напольных перекрытий.

Деревянные перекрытия

Для расчета максимального прогиба следует учитывать:

  1. Материал. Различные породы дерева обладают разным показателем прочности, твердости и гибкости.
  2. Форма поперечного сечения и другие геометрические характеристики.
  3. Различные виды нагрузки на материал.

Допустимый прогиб балки учитывает максимальный реальный прогиб, а также возможные дополнительные эксплуатационные нагрузки.

Конструкции из древесины хвойных пород

Стальные

Металлические балки отличаются сложным или даже составным сечением и чаще всего изготавливаются из нескольких видов металла. При расчете таких конструкций требуется учитывать не только их жесткость, но и прочность соединений.

Стальные перекрытия

Металлические конструкции изготавливаются путем соединения нескольких видов металлопроката, используя при этом такие виды соединений:

  • электросварка;
  • заклепки;
  • болты, винты и другие виды резьбовых соединений.

Стальные балки чаще всего применяются для многоэтажных домов и других видов строительства, где требуется высокая прочность конструкции. В данном случае при использовании качественных соединений гарантируется равномерно распределенная нагрузка на балку.

Для проведения расчета балки на прогиб может помочь видео:

Прочность и жесткость балки

Чтобы обеспечить прочность, долговечность и безопасность конструкции, необходимо выполнять вычисление величины прогиба балок еще на этапе проектирования сооружения. Поэтому крайне важно знать максимальный прогиб балки, формула которого поможет составить заключение о вероятности применения определенной строительной конструкции.

Использование расчетной схемы жесткости позволяет определить максимальные изменения геометрия детали. Расчет конструкции по опытным формулам не всегда эффективен. Рекомендуется использовать дополнительные коэффициенты, позволяющие добавить необходимый запас прочности. Не оставлять дополнительный запас прочности – одна из основных ошибок строительства, которая приводит к невозможности эксплуатации здания или даже тяжелым последствиям.

Существует два основных метода расчета прочности и жесткости:

  1. Простой. При использовании данного метода применяется увеличительный коэффициент.
  2. Точный. Данный метод включает в себя использование не только коэффициентов для запаса прочности, но и дополнительные вычисления пограничного состояния.

Последний метод является наиболее точным и достоверным, ведь именно он помогает определить, какую именно нагрузку сможет выдержать балка.

Расчет балок на прогиб

Расчет на жесткость

Для расчета прочности балки на изгиб применяется формула:

M – максимальный момент, который возникает в балке;

W n,min – момент сопротивления сечения, который является табличной величиной или определяется отдельно для каждого вида профиля.

R y является расчетным сопротивлением стали при изгибе. Зависит от вида стали.

γ c представляет собой коэффициент условий работы, который является табличной величиной.

Расчет жесткости или величины прогиба балки является достаточно простым, поэтому расчеты может выполнить даже неопытный строитель. Однако для точного определения максимального прогиба необходимо выполнить следующие действия:

  1. Составление расчетной схемы объекта.
  2. Расчет размеров балки и ее сечения.
  3. Вычисление максимальной нагрузки, которая воздействует на балку.
  4. Определение точки приложения максимальной нагрузки.
  5. Дополнительно балка может быть проверена на прочность по максимальному изгибающему моменту.
  6. Вычисление значения жесткости или максимально прогиба балки.

Чтобы составить расчетную схему, потребуются такие данные:

  • размеры балки, длину консолей и пролет между ними;
  • размер и форму поперечного сечения;
  • особенности нагрузки на конструкцию и точно ее приложения;
  • материал и его свойства.

Если производится расчет двухопорной балки, то одна опора считается жесткой, а вторая – шарнирной.

Расчет моментов инерции и сопротивления сечения

Для выполнения расчетов жесткости потребуется значение момент инерции сечения (J) и момента сопротивления (W). Для расчета момента сопротивления сечения лучше всего воспользоваться формулой:

Важной характеристикой при определении момента инерции и сопротивления сечения является ориентация сечения в плоскости разреза. При увеличении момента инерции увеличивается и показатель жесткости.

Определение максимальной нагрузки и прогиба

Для точного определения прогиба балки, лучше всего применять данную формулу:

q является равномерно-распределенной нагрузкой;

E – модуль упругости, который является табличной величиной;

l – длина;

I – момент инерции сечения.

Чтобы рассчитать максимальную нагрузку, следует учитывать статические и периодические нагрузки. К примеру, если речь идет о двухэтажном сооружении, то на деревянную балку будет постоянно действовать нагрузка от ее веса, техники, людей.

Особенности расчета на прогиб

Расчет на прогиб проводится обязательно для любых перекрытий. Крайне важен точный расчет данного показателя при значительных внешних нагрузках. Сложные формулы в данном случае использовать необязательно. Если использовать соответствующие коэффициенты, то вычисления можно свести к простым схемам:

  1. Стержень, который опирается на одну жесткую и одну шарнирную опору, и воспринимает сосредоточенную нагрузку.
  2. Стержень, который опирается на жесткую и шарнирную опору, и при этом на него действует распределенное нагружение.
  3. Варианты нагружения консольного стержня, который закреплен жестко.
  4. Действие на конструкцию сложной нагрузки.

Применение этого метода вычисления прогиба позволяет не учитывать материал. Поэтому на расчеты не влияют значения его основных характеристик.

Пример подсчета прогиба

Чтобы понять процесс расчета жесткости балки и ее максимального прогиба, можно использовать простой пример проведения расчетов. Данный расчет проводится для балки с такими характеристиками:

  • материал изготовления – древесина;
  • плотность составляет 600 кг/м3;
  • длина составляет 4 м;
  • сечение материала составляет 150*200 мм;
  • масса перекрывающих элементов составляет 60 кг/м²;
  • максимальная нагрузка конструкции составляет 249 кг/м;
  • упругость материала составляет 100 000 кгс/ м²;
  • J равно 10 кг*м².

Для вычисления максимальной допустимой нагрузки учитывается вес балки, перекрытий и опор. Рекомендуется также учесть вес мебели, приборов, отделки, людей и других тяжелых вещей, который также будут оказывать воздействие на конструкцию. Для расчета потребуются такие данные:

  • вес одного метра балки;
  • вес м2 перекрытия;
  • расстояние, которое оставляется между балками;

Чтобы упросить расчет данного примера, можно принять массу перекрытия за 60 кг/м², нагрузку на каждое перекрытие за 250 кг/м², нагрузки на перегородки 75 кг/м², а вес метра балки равным 18 кг. При расстоянии между балками в 60 см, коэффициент k будет равен 0,6.

Если подставить все эти значения в формулу, то получится:

q = (60 + 250 + 75) * 0,6 + 18 = 249 кг/м.

Для расчета изгибающего момента следует воспользоваться формулой f = (5 / 384) * [(qn * L4) / (E * J)] £ [¦].

Подставив в нее данные, получается f = (5 / 384) * [(qn * L4) / (E * J)] = (5 / 384) * [(249 * 44) / (100 000 * 10)] = 0,13020833 * [(249 * 256) / (100 000 * 10)] = 0,13020833 * (6 3744 / 10 000 000) = 0,13020833 * 0,0000063744 = 0,00083 м = 0,83 см.

Именно это и является показателем прогиба при воздействии на балку максимальной нагрузки. Данные расчеты показывают, что при действии на нее максимальной нагрузки, она прогнется на 0,83 см. Если данный показатель меньше 1, то ее использование при указанных нагрузках допускается.

Использование таких вычислений является универсальным способом вычисления жесткости конструкции и величины их прогибания. Самостоятельно вычислить данные величины достаточно легко. Достаточно знать необходимые формулы, а также высчитать величины. Некоторые данные необходимо взять в таблице. При проведении вычислений крайне важно уделять внимание единицам измерения. Если в формуле величина стоит в метрах, то ее нужно перевести в такой вид. Такие простые ошибки могут сделать расчеты бесполезными. Для вычисления жесткости и максимального прогиба балки достаточно знать основные характеристики и размеры материала. Эти данные следует подставить в несколько простых формул.